Posts about using viruses

Massive Blast of Measles Vaccine Wiped Out Cancer In Study

Unfortunately these stories are not uncommon but the hoped for follow through of practical solutions that work at all are rare. But we keep learning and while the breakthroughs based on these news stories is rare we do keep finding new and better methods to cope with health issues.

Mayo Clinic trial: Massive blast of measles vaccine wipes out cancer

Stacy Erholtz was out of conventional treatment options for blood cancer last June when she underwent an experimental trial at the Mayo Clinic that injected her with enough measles vaccine to inoculate 10 million people.

The 50-year-old Pequot Lakes mother is now part of medical history.

The cancer, which had spread widely through her body, went into complete remission and was undetectable in Erholtz’s body after just one dose of the measles vaccine, which has an uncanny affinity for certain kinds of tumors.

Erholtz was one of just two subjects in the experiment and the only one to achieve complete remission. But the experiment provides the “proof of concept” that a single, massive dose of intravenous viral therapy can kill cancer by overwhelming its natural defenses, according to Dr. Stephen Russell, a professor of molecular medicine who spearheaded the research at Mayo.

Researchers have known for decades that viruses can be used to destroy cancer. They bind to tumors and use them as hosts to replicate their own genetic material; the cancer cells eventually explode and release the virus. Antiviral vaccines that have been rendered safe can produce the same effects and can also be modified to carry radioactive molecules to help destroy cancer cells without causing widespread damage to healthy cells around the tumors. The body’s immune system then attacks any remaining cancer that carries remnants of the vaccine’s genetic imprint.

Mayo started out giving patients 1 million infectious units and gradually cranked up the dosage — but it didn’t work until Erholtz and another patient were injected with 100 billion infectious units, he said.

While the treatment worked in Erholtz, whose tumors were primarily in her bone marrow, the results weren’t sustained in the second patient, whose tumors were largely confined to her leg muscles. Russell said researchers need to study how the nature of the tumor affects the lethality of the virus.

One challenge of health research on fatal health conditions is that the experimentation with people is usually limited to people that have no available options left from the approved treatments. So, in general they are very sick. And the great complexity of dealing with human immune systems, the variation in the disease and in people create a very difficult research environment. Thankfully we have many great scientists dedicated to finding new treatments.

Related: Virus Kills Breast Cancer Cells in LaboratoryVirus Engineered To Kill Deadly Brain TumorsUsing Bacteria to Carry Nanoparticles Into CellsWebcast of a T-cell Killing a Cancerous Cell

Virus Kills Breast Cancer Cells in Laboratory

Some very exciting and good news from Penn State. Researchers have found a virus that kills breast cancer cells. It is great to read about research breakthroughs like this. Of course, most of these announcements never become practical solutions, unfortunately. And if they do it is many many years later and almost always in much less exciting ways than the headlines. Still, the percentage that do make it through the process into workable solutions provide us great benefits.

Virus kills breast cancer cells in laboratory

Adeno-associated virus type 2 (AAV2) is a virus that regularly infects humans but causes no disease. Past studies by the same researchers show that it promotes tumor cell death in cervical cancer cells infected with human papillomavirus. Researchers used an unaltered, naturally occurring version of AAV2 on human breast cancer cells.

“Breast cancer is the most prevalent cancer in the world and is the leading cause of cancer-related death in women,” said Samina Alam, research associate in microbiology and immunology. “It is also complex to treat.”

“We can see the virus is killing the cancer cells, but how is it doing it?” Alam said. “If we can determine which viral genes are being used, we may be able to introduce those genes into a therapeutic. If we can determine which pathways the virus is triggering, we can then screen new drugs that target those pathways. Or we may simply be able to use the virus itself.”

AAV2 does not affect healthy cells. However, if AAV2 were used in humans, the potential exists that the body’s immune system would fight to remove it from the body. Therefore, by learning how AAV2 targets the death pathways, researchers potentially can find ways to treat the cancer without using the actual virus.

In ongoing studies, the Penn State researchers also have shown AAV2 can kill cells derived from prostate cancer, mesothelioma, squamous cell carcinoma, and melanoma. A fourth line of breast cancer cells — representing the most aggressive form of the disease — also was studied in a mouse breast tumor model, followed by treatment with AAV2. Preliminary results show the destruction of the tumors in the mice, and researchers will report the findings of those mouse studies soon.

The fight against cancer has many promising breakthroughs. We have made some great progress. Still the fight is extremely difficult and we have many more frustrations than successes.

Related: Webcast of a T-cell Killing a Cancerous CellSynthetic Biologists Design a Gene that Forces Cancer Cells to Commit SuicideResearchers Find Switch That Allows Cancer Cells to Spread

Our Genome Has Adopted Virus Genes Critical to Our Survival

Mammals Made By Viruses by Carl Zimmer

Viruses have insinuated themselves into the genome of our ancestors for hundreds of millions of years. They typically have gotten there by infecting eggs or sperm, inserting their own DNA into ours. There are 100,000 known fragments of viruses in the human genome, making up over 8% of our DNA. Most of this virus DNA has been hit by so many mutations that it’s nothing but baggage our species carries along from one generation to the next. Yet there are some viral genes that still make proteins in our bodies. Syncytin appeared to be a hugely important one to our own biology. Originally, syncytin allowed viruses to fuse host cells together so they could spread from one cell to another. Now the protein allowed babies to fuse to their mothers.

The big picture that’s now emerging is quite amazing. Viruses have rained down on mammals, and on at least six occasions, they’ve gotten snagged in their hosts and started carrying out the same function: building placentas.

Some mammals that scientists have yet to investigate, such as pigs and horses, don’t have the open layer of cells in their placenta like we do. Scientists have come up with all sorts of explanations for why that may be, mainly by looking for differences in the biology of each kind of mammals. But the answer may be simpler: the ancestors of pigs and horses might never have gotten sick with the right virus.

More amazing facts from science. This stuff is so interesting. Carl Zimmer is a fantastic science writer and he has written several great science books.

Related: Amazing Science, RetrovirusesMicrocosm by Carl ZimmerTen Things Everyone Should Know About ScienceParasite Rex

Using a Virus to Improve Solar-cell Efficiency Over 30%

Solar and wind energy are making great strides, and are already contributing significantly to providing relatively clean energy.

Researchers at MIT have found a way to make significant improvements to the power-conversion efficiency of solar cells by enlisting the services of tiny viruses to perform detailed assembly work at the microscopic level.

In a solar cell, sunlight hits a light-harvesting material, causing it to release electrons that can be harnessed to produce an electric current. The research, is based on findings that carbon nanotubes — microscopic, hollow cylinders of pure carbon — can enhance the efficiency of electron collection from a solar cell’s surface.

Previous attempts to use the nanotubes, however, had been thwarted by two problems. First, the making of carbon nanotubes generally produces a mix of two types, some of which act as semiconductors (sometimes allowing an electric current to flow, sometimes not) or metals (which act like wires, allowing current to flow easily). The new research, for the first time, showed that the effects of these two types tend to be different, because the semiconducting nanotubes can enhance the performance of solar cells, but the metallic ones have the opposite effect. Second, nanotubes tend to clump together, which reduces their effectiveness.

And that’s where viruses come to the rescue. Graduate students Xiangnan Dang and Hyunjung Yi — working with Angela Belcher, the W. M. Keck Professor of Energy, and several other researchers — found that a genetically engineered version of a virus called M13, which normally infects bacteria, can be used to control the arrangement of the nanotubes on a surface, keeping the tubes separate so they can’t short out the circuits, and keeping the tubes apart so they don’t clump.

The system the researchers tested used a type of solar cell known as dye-sensitized solar cells, a lightweight and inexpensive type where the active layer is composed of titanium dioxide, rather than the silicon used in conventional solar cells. But the same technique could be applied to other types as well, including quantum-dot and organic solar cells, the researchers say. In their tests, adding the virus-built structures enhanced the power conversion efficiency to 10.6% from 8% — almost a one-third improvement.

Read the full press release

Related: Using Virus to Build BatteriesUsing Viruses to Construct ElectrodesUsing Bacteria to Carry Nanoparticles Into Cells

Using Virus to Build Batteries

MIT researchers have shown they can genetically engineer viruses to build both the positively and negatively charged ends of a lithium-ion battery. We have posted about similar things previously, for example: Virus-Assembled BatteriesUsing Viruses to Construct Electrodes and Biological Molecular Motors. New virus-built battery could power cars, electronic devices

Gerbrand Ceder of materials science and Associate Professor Michael Strano of chemical engineering, genetically engineered viruses that first coat themselves with iron phosphate, then grab hold of carbon nanotubes to create a network of highly conductive material.

Because the viruses recognize and bind specifically to certain materials (carbon nanotubes in this case), each iron phosphate nanowire can be electrically “wired” to conducting carbon nanotube networks. Electrons can travel along the carbon nanotube networks, percolating throughout the electrodes to the iron phosphate and transferring energy in a very short time. The viruses are a common bacteriophage, which infect bacteria but are harmless to humans.

The team found that incorporating carbon nanotubes increases the cathode’s conductivity without adding too much weight to the battery. In lab tests, batteries with the new cathode material could be charged and discharged at least 100 times without losing any capacitance. That is fewer charge cycles than currently available lithium-ion batteries, but “we expect them to be able to go much longer,” Belcher said.

This is another great example of university research attempting to find potentially valuable solutions to societies needs. See other posts on using virus for productive purposes.

Making Embryonic Stem Cells

photo of Junying Yuphoto of Junying Yu, an assistant scientist with the University of Wisconsin-Madison by Bryce Richter, 2007.

Holy Grail of stem cell research within reach by Mark Johnson

It was time to test the 14 genes she had selected as the best candidates to reprogram a cell.

Using viruses to deliver the genes, she inserted all 14 at once into human cells. On the morning of July 1, 2006, Yu arrived at the lab and examined the culture dishes. Her eyes focused on a few colonies, each resembling a crowded city viewed from space. They looked like embryonic stem cells.

Cells must pass certain tests. They must multiply for weeks while remaining in their delicate, primitive state. When they are allowed to develop, they must turn into all the other cell types.

Bad things happen. Cells develop too soon. Cells die. There is no “aha!” moment, Thomson has said, only stress. He looked at the colonies and suppressed any excitement. He told Yu, essentially: OK, well get back to me in a couple of weeks.

In the fall of 2006, Yu was preparing to whittle down her list of genes when she fell ill. The pain in her gut was awful. She struggled to eat. Her doctor thought it was a stomach flu. Instead, in late October, Yu’s appendix burst. She was laid up for a month. When she returned to the lab, the problem with the culture medium struck again.

Not until January 2007 was she able to begin narrowing the list of genes. She spent several months testing subsets of them, finally arriving at four. Two, Oct4 and Sox2, were “Yamanaka factors,” the name given to the genes the Japanese scientist had used to reprogram mouse cells. Two, Nanog and Lin28, were not.

Using a virus to deliver the four genes, she reprogrammed a line of fetal cells, then repeated the experiments with more mature cells. Although the process was inefficient, succeeding with only a small fraction of cells, it did work.

Dr. Junying Yu, an American trained scientist who entered the US as a foreign student from China. Which is somewhat ironic given the movement of USA based stem cell researches to China. Great article showing the process of scientific inquiry.

Related: Junying Yu, James Thomson and Shinya Yamanaka (Time people who mattered 2007) – Discovery leaps legal, financial and ethical hurdles facing stem cellsEdinburgh University $115 Million Stem Cell CenterStanford Gets $75 Million for Stem Cell Centerposts relating to Madison, Wisconsin

Potential Viral Therapy for Difficult Cancers

Potential viral therapy weapon for difficult cancers is safe and effective in study

Combining a herpes virus genetically altered to express a drug-enhancing enzyme with a chemotherapy drug effectively and safely reduced the size of highly malignant human sarcoma grafted into mice. This new finding may add to the growing arsenal of so called oncolytic viruses under development as novel cancer treatments, especially for difficult, inoperable tumors

“Based on these findings and other preclinical studies, we expect oncolytic viral therapy will be one additional treatment modality available in the future for oncologists,” Dr. Cripe said. “The challenge over the next decade will be determining which viruses work best for which cancers, at what doses, schedules, routes of administration, and in what combinations with other treatments.”

Related: Virus Engineered To Kill Deadly Brain TumorsCancer Cure, Not so FastLeading Causes of Deathposts on using viruses in various ways

Virus Engineered To Kill Deadly Brain Tumors

Yale Lab Engineers Virus That Can Kill Deadly Brain Tumors

A laboratory-engineered virus that can find its way through the vascular system and kill deadly brain tumors has been developed by Yale School of Medicine researchers, it was reported this week in the Journal of Neuroscience.

Each year 200,000 people in the United States are diagnosed with a brain tumor, and metastatic tumors and glioblastomas make up a large part of these tumors. There currently is no cure for these types of tumors, and they generally result in death within months.

“Three days after inoculation, the tumors were completely or almost completely infected with the virus and the tumor cells were dying or dead,” van den Pol said. “We were able to target different types of cancer cells. Within the same time frame, normal mouse brain cells or normal human brain cells transplanted into mice were spared. This underlines the virus’ potential therapeutic value against multiple types of brain cancers.”

Pretty cool. Too bad these press releases never quite live up to the initial promise. Still this one is very cool, if it can succeed in helping even a small percentage of people it will be a great breakthrough. It is also just cool – using a virus to kill tumors – how cool is that?

Related: What are viruses?Using Bacteria to Carry Nanoparticles Into CellsCancer Cure, Not so FastCancer cell ‘executioner’ foundCancer Deaths not a Declining TrendUsing Viruses to Construct Electrodes and More

Using Viruses to Construct Electrodes and More

She harnesses viruses to make things

Manufacturing was once the province of human hands, then of machines. Angela Belcher, professor of materials science and engineering and biological engineering at MIT, has pushed manufacturing in another, much smaller, direction: Her lab has genetically engineered viruses that can construct useful objects like electrodes and wires.

Her lab employed this method to form an electrode that can be used in a lithium ion battery like the rechargeable ones used in electronics. The result looks like an innocuous length of celluloid tape, the sort you could use to wrap a package.

“It’s self-assembled,” says Belcher. “The viruses make these materials at room temperature.” So there’s little pollution.

Belcher hopes to be making prototypes within the next two years. “Actual devices are five to 10 years off.”

Related: Webcasts including: Viruses as nanomachinesVirus-Assembled BatteriesWhat Are Viruses?Bacteria Sprout Conducting NanowiresBiological Molecular Motors

  • Recent Comments:

    • Asim Malik: There are really important for upcoming generation for me Asim Malik i always prefer about...
    • Anders Jytzler: I’ve always liked electronic boats and planes, but never thought people were so into...
    • Warna Melayu: Apple is very good for our health. Nice to visit your site.
    • Carolina Cabello: Always been against comercial hair products. Why use them, when there is plenty of good...
    • Harsh: Wow, never thought that competition is so amazing. Exited for next year’s competition, am not...
    • Anonymous: I read about the VAN(vehicular adhoc network) in my MCS degree.That is make through the phone...
    • curiouscat: Animation is used to enhance the message of the webcast, it isn’t used as a joke. Here is...
    • kaziya: i dont understand why you guys are taking this Ebola virus as ajoke like i mean this stuff is...
  • Recent Trackbacks:

  • Links