Currently browsing the Products Category

Posts about cool products including high tech gadgets, appropriate technology solutions and possible products in the future. Recommended posts: Lego Learning (mindstorms) - Lifestraw - Video Goggles - Wakamaru Robot - Re-engineered Wheelchair

Concrete Tent

This shows a cool engineering innovation: canvas-like material that when it is saturated with water will set (over 5+ hours) into hard concrete. In this example a “tent” with regular doors is covered with water and inflated. After setting it hard enough to climb on top of.

The manufacturer’s site has move information.

Related: Concrete pre-fad Houses 1919 and 2007Easy to Assembly Off-the-grid TownsResearch on Ancient Roman Concrete Will Allow the Creation of More Durable and Environmentally Friendly ConcreteUW- Madison Wins 4th Concrete Canoe Competition

Bitbeam: Open Source Hardware Prototyping Platform

Bitbeam is an open source construction toy/hardware prototyping platform. A collection of LEGO Technic compatible parts (beams) which can be combined to construct whatever contraption the user has thought up.

The Bitbeam project aims to define a set of parts which the users themselves can produce using increasingly available technologies for local fabrication like 3D printers, laser cutters and CNC mills.

view of various piece of 3d printed items

Tapster is a robot that automates mobile application checking on a smartphone. It is built using bitbeam.

The latest post on the Bitbeam web site is from 2013 but it seems it is still an active project (it would be nice if they update the site).

Please add a comment if you now of updated information or of similar open source projects.

Related: Open Source Ecology: Using Open Engineering to Create Economic BenefitArduino Introduction Video Tutorial3D Printing at Home: Today, Challenges and OpportunitiesIntroduction Video on 3D PrintingLego Mindstorms Robots Solving: Sudoku and Rubik’s Cube (2009)

Sustainable Ocean Farming

Farming the Sea: why eating kelp is good for you and good for the environment

There are serious problems with our ability to grow healthy food for the number of people we have today (and will have in the future). Innovations have allowed us to feed ourselves. But the damage done to topsoil and other damage including pollution of our rivers is huge. Overfishing and factory farms are keeping us going today but are doing immense damage and are not sustainable.

Seed companies abusing the corrupt government patent systems creates even more damage. We need better solutions. We have many people doing great things but we need to do much more. Ocean farming is one of many areas we should expand. And we should greatly reduce the use of factory farms, antibiotics for livestock, overfishing and the overuse of pesticides.

How an Army of Ocean Farmers are Starting an Economic Revolution

So we all went on a search for sustainability. I ended up in Northern Canada on an aquaculture farm. At that point aquaculture was supposed to be the great solution to overfishing, but when I got there I found more of the same, only using new technologies to pollute local waterways with pesticides and pumping fish full of antibiotics.

I never thought climate change had anything to do with my life. But it does. From my vantage point, climate change is not an environmental issue at all — it’s an economic issue.

As ocean farmers, we reject aquaculture’s obsession with monoculture, an obsession similar to that of modern land farming. Our goal is diversity. It’s a sea-basket approach:We grow two types of seaweeds, four kinds of shellfish, and we harvest salt. But with over 10,000 edible plants in the ocean, we’ve barely scratched the surface.

Instead of repeating history we’re building infrastructure from seed-to-harvest-to-market. We’re starting nonprofit hatcheries so that our farmers can access low-cost seed. We’re creating ocean seed banks so that the Monsantos of the world can’t privatize the source of our food and livelihoods.

Related: SelFISHingThe State of the Oceans (2011)Rethinking the Food Production System (2008)

Google Cardboard 3d Viewer Helped Surgeons Save Baby’s Life

$20 cardboard toy saves baby’s life

Doctors at Nicklaus Children’s Hospital in Miami used the device to map out an operation they say they couldn’t have envisioned otherwise.

“It was mind-blowing,” says Cassidy Lexcen, the baby’s mother. “To see this little cardboard box and a phone, and to think this is what saved our daughter’s life.”

Google Cardboard is a virtual reality and augmented reality platform developed by Google for use with a head mount for smart phone. Just get a simple cardboard holder you wear like goggles and an app for Android or iOS and you can view cool 3d virtual realities.

Related: Night Vision Contact LensesiPhone Addition as Alternative to Expensive Ophthalmology EquipmentVery Cool Wearable Computing Gadget from MITCool Mechanical Simulation System

Cleaning Up the Plastic Pollution in Our Oceans

This is an interesting talk on an important topic: cleaning up plastic in the ocean. ,a student from the Netherlands, looked to find a solution to a problem others said couldn’t be solved.

This is exactly the type of wonderful activity that inspired people can accomplish using science and engineering. He collected an understanding of the 50 issues that supposedly makes a solution impossible.

After getting funding (sparked by an explosion of viral social media) he worked on exploring the “insolvable” problems (having withdrawn from school to work on this problem). It is wonderful to see what we can do when inspired people use science and engineering to make the world a better place.

From their website, The Ocean Cleanup

In the feasibility report, we estimated that a 100-kilometer array operating in the North Pacific gyre for 10 years could remove 42% of the plastics in the area, or an estimated 70 million kilograms.

The plastic will be stored in an internal buffer within the platform at the tip of the V-shaped array. The plastic in the buffer will regularly be emptied onto a vessel that comes to collect it for transport to land. This will occur approximately once every six weeks, depending on the size of the vessel.

Besides monetary support, your relevant knowledge and skills may be a very welcome addition to The Ocean Cleanup. Our work requires not only scientific and technical expertise, but also assistance with legal, commercial and policy matters. If you would like to get actively involved in our work, If you would like to get actively involved in our work, please visit the careers page.

They aim to put a full scale pilot project in place in 3 to 4 years.

Related: Albatross Chicks Fed Plastic Ocean Pollution by ParentsAltered Oceans: the Crisis at Sea (2006)Using Robots to Collect Data on our OceansDead Zones in the Ocean

Data Furnaces: Free Heating, for Those with Fiber Internet

Data furnaces have arrived in the Netherlands offering free heating for those with fiber internet connections. Those running data centers spend a lot of money cooling them off or thinking of ways to keep cooling costs down Google Uses Only Outside Air to Cool Data Center in Belgium (weather should provide free cooling for all but about 7 days a year).

Nerdalize is offering an interesting engineering solution to this issue. Even better than eliminating cooling costs this idea will use the excess heat to warm people’s houses.

By placing high performance servers in homes Nerdalize creates highly distributed compute cloud without the overhead cost of conventional cloud and co-location solutions. This creates a triple-win where sustainable computing power becomes an affordable commodity, homes are heated for free and emissions are drastically reduced!

This structural cost advantage allows us to offer computing power that is up to 55% more affordable than major cloud-providers or co-location solutions whilst giving incredible performance.

The Nerdalize heater contains high-performance servers in the form of a radiator and allows for them to be placed in your home safely and secure. As Nerdalize covers the cost of electricity, the heat generated by computations, such as medical research, heat your home for free.

image of the Eneco eRadiator

The Eneco eRadiator

The installation of a server heater, the Eneco eRadiator, in the living rooms of five families at different locations in the Netherlands this month starts a field test of the units. The purpose of the test is to collect information on customer experience and to identify possible areas of improvement of the eRadiator.

Sign up on their website if you want free heating (Netherlands is likely the best bet but they may expand around Europe also, or even further).

Related: Google Lets Servers Stay Hot, Saving Air Conditioning CostsData Center Energy Needs

Intel International Science and Engineering Fair 2015

Raymond Wang, 17, of Canada was awarded first place for engineering a new air inlet system for airplane cabins to improve air quality and curb disease transmission at this year’s Intel International Science and Engineering Fair.

Wang’s system improves the availability of fresh air in the cabin by more than 190% while reducing pathogen inhalation concentrations by up to 55 times compared to conventional designs, and can be easily and economically incorporated in existing airplanes. Wang received the Gordon E. Moore Award of US$75,000. The system uses vents to create a “bubble” around passengers that deflects incoming air.

Nicole Ticea, 16, of Canada received one of two Intel Foundation Young Scientist Awards of US$50,000 for developing an inexpensive, easy-to-use testing device to combat the high rate of undiagnosed HIV infection in low-income communities. Her disposable, electricity-free device provides results in an hour and should cost less than US$5 to produce. Ticea has already founded her own company, which recently received a US$100,000 grant to continue developing her technology.

Karan Jerath, 18, of Friendswood, Texas, received the other Intel Foundation Young Scientist Award of US$50,000 for refining and testing a novel device that should allow an undersea oil well to rapidly and safely recover following a blowout. Jerath developed a better containment enclosure that separates the natural gas, oil and ocean water; accommodates different water depths, pipe sizes and fluid compositions; and can prevent the formation of potentially clogging methane hydrate.

This year’s Intel International Science and Engineering Fair featured approximately 1,700 young scientists selected from 422 affiliate fairs in more than 75 countries, regions and territories.

Related: Intel Science Talent Search 2012 AwardeesGreat Projects From First Google Science Fair Finalists (2011)2008 Intel Science Talent SearchHigh School Student Creates: Test That is Much More Accurate and 26,000 Times Cheaper Than Existing Pancreatic Cancer Tests

Car Powered by Compressed Air

I wrote about cars powered by compressed air back in 2008. Turning such innovative prototypes into products of sustainable businesses is quite difficult.

This new attempt to produce cars powered by compressed air has an innovative design with a joystick instead of a drivers wheel. The AirPod is being developed in France. Compressed air has been used to power trams in France since the 19th century.

The AirPod has a range of 150 to 200 km and a top speed for 80 km per hour. The cost will be about US$10,000.

They claim the cost per mile is about 1/3rd of that for electric vehicles. It is nice that we have engineers around the globe continually working on new uses of technology to provide us better options for living.

I hope such cars can be a success. It does seem to me electric cars seem the more likely large scale success but it is good to have people seeking out innovative solutions.

Related: Compressed Air Powered Car Webcast (2008)Self Driving Cars Have Huge Potential for Benefit to SocietyEngineers Save a Life, With Safe Car DesignToyota Scion iQ (2011)Car Style Mass Transit Mag Lev System (2009)

Scientific Inquiry Leads to Using Fluoride for Healthy Teeth

This webcast, from the wonderful SciShow, explores how we discovered fluoride helps prevent tooth decay and how we then used that knowledge and finally discovered why it worked.

I love stories of how we learn for observing what is happening. We don’t always need to innovate by thinking up creative new ideas. If we are observant we can pick up anomalies and then examine the situation to find possible explanations and then experiment to see if those explanations prove true.

When working this way we often are seeing correlation and then trying to figure out which part of the correlation is an actual cause. So in this dental example, a dentist noticed his patients had bad brown stains on their teeth than others populations did.

After investigation the natural fluoridation of the water in Colorado Springs, Colorado, USA seemed like it might be an explanation (though they didn’t understand the chemistry that would cause that result). They also explored the sense that the discolored teeth were resistant to decay.

Even without knowing why it is possible to test if the conditions are the cause. Scientists discovered by reducing the level of fluoridation in the water the ugly brown stains could be eliminated (these stains took a long time to develop and didn’t develop in adults). Eventually scientists ran an experiment in Grand Rapids, Michigan and found fluoridation of the water achieved amazing results for dental health. The practice of fluoridation was then adopted widely and resulted in greatly improved dental health.

In 1901, Frederick McKay, a recent dental school graduate, opened a dental practice in Colorado Springs, Colorado. He was interested in what he saw and sought out other dentists to explore the situation with him but had little success. In 1909, he found some success when renowned dental researcher Dr. G.V. Black collaborate with him.
Dr. H. Trendley Dean, head of the Dental Hygiene Unit at the National Institute of Health built on their work when he began investigating the epidemiology of fluorosis in 1931. It wasn’t until 1945 that the Grand Rapids test started. Science can take a long time to move forward.

Only later did scientists unravel why this worked. The fluoride reacts to create a stronger enamel than if the fluoride is not present. Which results in the enamal being less easily dissolved by bacteria.
Health tip: use a dental stimudent (dental picks) or floss your teeth to maintain healthy gums and prevent tooth decay. It makes a big difference.

Related: Why does orange juice taste so bad after brushing your teeth?Microbiologist Develops Mouthwash That Targets Only Harmful Cavity Causing BacteriaUsing Nanocomposites to Improve Dental Filling PerformanceFinding a Dentist in Chiang Mai, ThailandFalse Teeth For CatsWhy Does Hair Turn Grey as We Age?

MudWatt: Make Power From Mud!

Keegan Cooke and Kevin Rand created MudWatt kits as a way to engage kids/students with science. From the website:

We want to show kids this brighter side of STEM, to empower them to become the great problem solvers of tomorrow. Because let’s face it, there are plenty of problems in the world that need solving.

Unfortunately, our experience in school wasn’t unique. In 2011, less than one-third of 8th graders in the U.S. were deemed proficient in science. Today, 70% of the fastest growing careers are in STEM fields. The supply of STEM education is not meeting the demand.

Most of the world’s mud contain microbes that produce electricity when they eat. That is the engine driving the MudWatt. Colonies of special bacteria (called shewanella and geobacter) generate the electricity in a MudWatt.

The electricity output is proportional to the health and activity of that bacterial colony. By maintaining these colonies in different ways, you can use MudWatt to run all kinds of great experiments. Thus the MudWatt allows kids to engage with science, using their natural curiosity to experiment and learn. Engaging this too-often-neglected human potential will bring joy to those kids (as kids and as grown-ups) and benefit our society.

With standard topsoils, typical power levels are around 100 microWatts, which is enough to power the LED, buzzer, clock, etc..

Related: Arduino, open source hardware (Introduction Video Tutorial)Teaching Through TinkeringAwesome Gifts for the Maker in Your LifeQubits Construction Toy

3D Printing at Home: Today, Challenges and Opportunities

Guest post by Noah Hornberger

The State of 3D Printing at Home

Rapid prototyping is very rewarding. Moving from an idea that you had during breakfast to an object you can hold in your hands by lunchtime feels like magic or science fiction.

Modeling tools are getting easier to use, making the actual process of designing 3D objects fairly intuitive and dare I say . . . easy. I suspect home 3D printing is empowering a silent revolution that will be more and more apparent in the coming years.

3d printed taco holder with tacos

Taco Shell Holder, a recent idea I had during breakfast was ready to test the next day.

Even so, there is a lot of quirkiness to the 3D print technology that an average consumer is probably not ready to deal with. In this post I want to give inside information I have learned by running my own home-based 3D print business. I have been there in the trenches, with a queue of orders, a few 3D printers and the drive to make it happen. And let me tell you that without the drive to push past the obstacles, it really would not be possible to run a 3D print-on-demand business this way.

3D printers have enabled me to pull off an impossible task of distributing my own artistic products to an international market. I have shipped to USA, Spain, Australia, Norway, Canada, and the UK. And this May of 2015 marks my first year of owning a 3D printer.

small 3d printed planters, 1 with a plant growing in it

Mini Dodecahedron Planters, my first attempt at designing and printing an idea from scratch. I was hooked.

So there is some magic I would say in being able to move through iterations of your ideas so fast. And magic in being able to post photos of your products that people can understand to be real and tangible things.

I have had ideas for products for many years and even tried to launch them (unsuccessfully). But now things are different. I do not have to convince people that an idea is good, I can show them a real example of finished art they can own.

I would argue that 3D modeling is the easiest part of the process. Getting a spectacular print can take some work and patience, because it can involve re-starting the printer with small changes in settings each time. As an American trained artist, I have a tendency to want things to be fast and easy. I want to press a button and it just works. 3D printers can kind of promise this ability, but most often, I am stepping in to keep the machines on track.

Continue reading

  • Recent Comments:

    • joseph: Commendable effort, Everyone ought to be concerned of the climate
    • Priya Talwar: Hey John! I think you done a very hard work to find cougar’s really must say and keep...
    • kaan: Kudos! to those doctors at Nicklaus Children’s Hospital in Miami! Hope VR and human biotics develop...
    • Khan: thanks for the post
    • Eric LeClair: Hats off to these ocean farmers. Too bad the media doesn’t cover these guys. The real...
    • Eric LeClair: 3d printing is hands down an incredibly technology. However, I totally believe the consumer...
    • Tom: Hi, on the photo is our m-Bitbeam set. More info about this set: www.tfsoft.cz/m-bitbea m Regards Tom
    • Kazuko Lally: Valuable ideas ! I am thankful for the facts ! Does someone know if my assistant could...
  • Recent Trackbacks:

  • Links