Currently browsing the Engineering Category

Recommended posts: The Future is Engineering - Engineering Lectures at Google - Monitor-Merrimac Memorial Bridge-Tunnel - USA Under-counting Engineering Graduates - Engineering the Future Economy - Tinker School: Engineering Camp - Innovation at Google Webcast - Worldwide Science and Engineering Doctoral Degree Data - Science Toys You Can Make With Your Kids - Engineering Graduates Again in Great Shape

Intel International Science and Engineering Fair 2015

Raymond Wang, 17, of Canada was awarded first place for engineering a new air inlet system for airplane cabins to improve air quality and curb disease transmission at this year’s Intel International Science and Engineering Fair.

Wang’s system improves the availability of fresh air in the cabin by more than 190% while reducing pathogen inhalation concentrations by up to 55 times compared to conventional designs, and can be easily and economically incorporated in existing airplanes. Wang received the Gordon E. Moore Award of US$75,000. The system uses vents to create a “bubble” around passengers that deflects incoming air.

Nicole Ticea, 16, of Canada received one of two Intel Foundation Young Scientist Awards of US$50,000 for developing an inexpensive, easy-to-use testing device to combat the high rate of undiagnosed HIV infection in low-income communities. Her disposable, electricity-free device provides results in an hour and should cost less than US$5 to produce. Ticea has already founded her own company, which recently received a US$100,000 grant to continue developing her technology.

Karan Jerath, 18, of Friendswood, Texas, received the other Intel Foundation Young Scientist Award of US$50,000 for refining and testing a novel device that should allow an undersea oil well to rapidly and safely recover following a blowout. Jerath developed a better containment enclosure that separates the natural gas, oil and ocean water; accommodates different water depths, pipe sizes and fluid compositions; and can prevent the formation of potentially clogging methane hydrate.

This year’s Intel International Science and Engineering Fair featured approximately 1,700 young scientists selected from 422 affiliate fairs in more than 75 countries, regions and territories.

Related: Intel Science Talent Search 2012 AwardeesGreat Projects From First Google Science Fair Finalists (2011)2008 Intel Science Talent SearchHigh School Student Creates: Test That is Much More Accurate and 26,000 Times Cheaper Than Existing Pancreatic Cancer Tests

Car Powered by Compressed Air

I wrote about cars powered by compressed air back in 2008. Turning such innovative prototypes into products of sustainable businesses is quite difficult.

This new attempt to produce cars powered by compressed air has an innovative design with a joystick instead of a drivers wheel. The AirPod is being developed in France. Compressed air has been used to power trams in France since the 19th century.

The AirPod has a range of 150 to 200 km and a top speed for 80 km per hour. The cost will be about US$10,000.

They claim the cost per mile is about 1/3rd of that for electric vehicles. It is nice that we have engineers around the globe continually working on new uses of technology to provide us better options for living.

I hope such cars can be a success. It does seem to me electric cars seem the more likely large scale success but it is good to have people seeking out innovative solutions.

Related: Compressed Air Powered Car Webcast (2008)Self Driving Cars Have Huge Potential for Benefit to SocietyEngineers Save a Life, With Safe Car DesignToyota Scion iQ (2011)Car Style Mass Transit Mag Lev System (2009)

3D Printing at Home: Today, Challenges and Opportunities

Guest post by Noah Hornberger

The State of 3D Printing at Home

Rapid prototyping is very rewarding. Moving from an idea that you had during breakfast to an object you can hold in your hands by lunchtime feels like magic or science fiction.

Modeling tools are getting easier to use, making the actual process of designing 3D objects fairly intuitive and dare I say . . . easy. I suspect home 3D printing is empowering a silent revolution that will be more and more apparent in the coming years.

3d printed taco holder with tacos

Taco Shell Holder, a recent idea I had during breakfast was ready to test the next day.

Even so, there is a lot of quirkiness to the 3D print technology that an average consumer is probably not ready to deal with. In this post I want to give inside information I have learned by running my own home-based 3D print business. I have been there in the trenches, with a queue of orders, a few 3D printers and the drive to make it happen. And let me tell you that without the drive to push past the obstacles, it really would not be possible to run a 3D print-on-demand business this way.

3D printers have enabled me to pull off an impossible task of distributing my own artistic products to an international market. I have shipped to USA, Spain, Australia, Norway, Canada, and the UK. And this May of 2015 marks my first year of owning a 3D printer.

small 3d printed planters, 1 with a plant growing in it

Mini Dodecahedron Planters, my first attempt at designing and printing an idea from scratch. I was hooked.

So there is some magic I would say in being able to move through iterations of your ideas so fast. And magic in being able to post photos of your products that people can understand to be real and tangible things.

I have had ideas for products for many years and even tried to launch them (unsuccessfully). But now things are different. I do not have to convince people that an idea is good, I can show them a real example of finished art they can own.

I would argue that 3D modeling is the easiest part of the process. Getting a spectacular print can take some work and patience, because it can involve re-starting the printer with small changes in settings each time. As an American trained artist, I have a tendency to want things to be fast and easy. I want to press a button and it just works. 3D printers can kind of promise this ability, but most often, I am stepping in to keep the machines on track.

Continue reading

Biomass Fueled Power Generator from All Power Labs

All Power Labs produces biomass fueled power generators. They have grown from a open science and engineering foundation to their current position. I really like how they are focused on promoting understanding and encouraging collaboration.

They reject the copyright cartel closed science mindset; which is something I like. Their product takes waste biomass; for example walnut shells, coconut shells, hardwood chips (Oak, Beech), softwood chips (Douglas Fir, Pine). It also takes corn cobs, palm kernel shells and others but there are additional challenges to operation.

Their products use gasification which is most simply thought of as choked combustion or incomplete combustion. It is burning solid fuels like wood or coal without enough air to complete combustion, so the output gas still has combustion potential. The unburned gas is then piped away to burn elsewhere as needed.

The Power Pallet is a complete biomass power generation solution that converts woody biomass into electricity. It costs $29,995 which translates to a cost of $1-$2/watt which is more cost effective that alternatives. They have significant sales in developing markets where power is often problematic. It is specifically not suited to some fuel – wastepaper (could maybe work in pelletized form), municipal waste, coconut husk…

This webcast is the start of a presentation on the history and current state of their efforts (continue to view other clips for the whole presentation):

Related: Ethanol: Science Based Solution or Special Interest WelfareDo It Yourself Solar Furnace for Home HeatingKudzu Biofuel Potential Chart of Wind Power Generation Capacity Globally from 2005 to 2012Turning Trash into Electricity (2006)

Using The Building of Robots to Engage Students in Learning

Fundi bots has a mission to use robotics training in African schools to create and inspire a new generation of problem solvers, innovators and change-makers. I believe strongly in this type of effort. We waste so much human potential by killing students design to learn. Instead we need to create systems that not only don’t kill that desire but allow it to flourish.

Fundi Bots focuses on the technological process of building robots as a way for students to look at the world around them from a practical, solution oriented perspective. By guiding students through problem identification, brainstorming, collaboration, construction, programming, final deployment and system feedback, we show them how the problems around them can be solved through a technological approach and persistent reductive analysis.

Fundi Made is an effort to create professional grade electronics right in our Fundi Spaces, and deploy the products in five core market segments; home-automation, agriculture, energy, security and health.

Related: Promoting Innovation in Sierra LeoneLetting Children Learn using Hole in the Wall ComputersGiven Tablets but No Teachers, Kids Teach Themselves (Having Never Seen Advanced Technology Before)Teaching Through TinkeringEncouraging Curiosity in Kids20th Annual US First Robotics Competition (2012)

Manufacture Biological Sensors Using Silk and Looms

The fabric chip platform from Achira Labs in India uses looms to manufacture biological sensors.

Image of process for creating silk test strips

image by Achira Labs

Yarn coated with appropriate biological reagents like antibodies or enzymes is woven into a piece of fabric at the desired location. Strips of fabric are then cut out, packaged and can form the substrate for di erent biological assays. Even a simple handloom could produce thousands of these sensors at very low cost.

The resulting fabrics can be used to test for pregnancy, diabetes, chronic diseases, etc.. Achira Labs, an Indian start-up, received $100,000 in Canadian funding in 2013 to develop a silk strip that can diagnose rotavirus, a common cause of diarrhea and can be used in diapers.

The company is planing to start selling silk diabetes test strips using there process this year and expects costs to be about 1/3 of the existing test strips using conventional manufacturing processes.

Related: Appropriate Technology Health Care Solution Could Save 72,000 Lives a YearWater WheelUsing Drones to Deliver Medical Supplies in Roadless AreasAppropriate Technology: Self Adjusting Glasses

20 Most Popular Post on Curious Cat Science and Engineering Blog in 2014

Here are the most popular (by number of page views) posts on our blog in 2014.

I think it is interesting to see the distribution over the years of publication

2014: 1
2013: 2

2011: 2
2010: 5
2009: 3
2008: 4
2007: 2

2005: 1

Related: 10 Most Popular Posts on the Curious Cat Management Blog in 2014

The Downside of Adopting the Metric System

The only downside of adopting the metric system is less control over room temperature (based on my experience). Every ºC = ºF * 1.8 so have less control (when using only integers to control temperature as is the case in my experience).

Granted this could be solved easily by using .5 (option in air conditioning and heating controllers but in my experience they don’t) for Celsius. For Fahrenheit this works out to enough control for me. For Celsius in a fair number (lets say 15%) of systems it is a bit uncomfortable.

The specific circumstances add greatly to creating a problem. My guess is those that annoy me swing even further than 1 ºC, they move further in one direction in order to not turn on and off all the time. So maybe that moves to swings of 2 or 3 ºC at the measurement point. But that is another issue, the measurement on home (or hotel) systems is often 1 reader so the variation is often greater in other locations.

Add to that the imprecision of their measures, I don’t have good data, but I am confident that the measurement error is fairly high. I am pretty comfortable at about 25ºC for air conditioning. But in some places I am cold at 27º and others I am warm at 23º. It could be me, but I don’t think so (most of the time – sometimes it is me).

A long time ago I had some imprecise portable temperature gauge and while I wouldn’t stake my life on results based on it, it confirmed my feelings (when I felt it was warmer than the local reading said my device agreed and when I felt it was colder my device agreed). Hardly scientifically valid proof, but it made me more comfortable trusting my opinion on this matter anyway.

My guess is in a unit using ºF you often can be 4 or 5 degrees off (or more) in different locations. For some people that might be ok. But for me that often starts to be uncomfortable. If you convert the issue to that time 1.8 it is noticably worse.

Now in reality I don’t think it expands quite that much. While the manufactures balance the confusion of adding .5 to a Celsius controller and decide not to, I would think they don’t swing 1.8 times as far (in heating or cooling in order to not turn on and off all the time), but it is still let precise than using Fahrenheit integers. I believe (hope) they set their internal dynamics not based only on integers but could say for example turn off .5º past the setting and turn on when the conditions are .5º worse than the setting (so .5º too warm in the case of air conditioning, for example).

It is still lame the USA fails to adopt the metric system, but reducing this problem in the USA is one small benefit of holding off :-) I wonder if 1 in a million, 1 in 10 million… up to 1 in 7.2 billion people (just me, all alone in the world) have my concern for the lack of precision of heating and air conditioners when using the metric system.

Related: Google Lets Servers Stay Hot, Saving Air Conditioning CostsDo It Yourself Solar Furnace for Home HeatingUsing Algae Filled Window Panes to Provide Passive and Active Solar

RoboBoat 2014 – Student Designed Autonomous Boats

The first video gives a recap of RoboBoat 2014. In 2014, Embry-Riddle Aeronautical University took 1st place. University of Florida was 2nd, followed by the Robotics Club at UCF and in 4th place the Georgia Institute of Technology.

The teams must design and build an autonomous boat to compete in challenges. During the competition, student teams race their autonomous surface vehicles through an aquatic obstacle course. This includes littoral area navigation, channel following, and autonomous docking. The competition provides an opportunity for students to develop skills in system engineering by accomplishing realistic missions with autonomous vehicles in the maritime environment.

A team participated from Diponegoro University, Semarang, Indonesia, which is next to me – though about as far from the finals as you can be on the globe.

Related: 9th International Autonomous Underwater Vehicle Competition20th Annual US First Robotics CompetitionBotball 2009 FinalsRobo-One Grand Championship in Tokyo (2007)Eco-Vehicle Student Competition

Continue reading

Appropriate Technology and Focus on Improving Lives at MIT

I have written about the D-lab at MIT founded by Amy Smith. This is just a reminder of all the good stuff they are doing. The D-Lab is building a global network of innovators to design and disseminate technologies that meaningfully improve the lives of people living in poverty. The program’s mission is pursued through interdisciplinary courses, technology development, and community initiatives, all of which emphasize experiential learning, real-world projects, community-led development, and scalability.

Another of their initiatives, the International Development Innovators Network seeks to create low-cost, high-impact technologies and ventures, while simultaneously documenting and evaluating approaches to international development that value local ingenuity and innovation. This effort includes design summits, innovation centers, business incubators, and a growing network of over 400 innovators in 50 countries.

D-Lab’s Youth Outreach Program focuses on Hands-on Invention Education and works with primary and secondary school teachers to develop curricular materials that build the confidence and skills needed by the next generation of innovators from around the world. Together with students and educators from around the world, D-Lab is developing and delivering hands-on curricula aimed at youth that utilize affordable locally available resources.

The program continues to help develop and deploy great products that are meeting the needs to people around the world.

The Leveraged Freedom Chair, is an all-terrain wheelchair designed for the harsh terrain faced by people with disabilities in developing countries.

Continue reading

STEM Graduates in the USA: 465,000 Women and 451,000 Men

STEM baccalaureate degrees in the USA in 2010 (reported by NSF in 2014):

Field Women
  
Men
Science (including math) 442,000 343,000
Engineering 23,000 108,000
Health 193,000 36,000
Total 658,000 586,000



If you exclude health, women still lead 465,000 to 451,000.

The same data for master’s degrees:

Field Women
  
Men
Science (including math) 86,000 72,000
Engineering 14,000 49,000
Health 97,000 22,000
Total 197,000 147,000



Excluding health the totals are: women 100,000, men 125,000.

In 2005, 235,197 women received undergraduate science and engineering degrees, compared to 230,806 for men. In 2005, 53,051 women received masters science and engineering degrees, compared to 66,974 men. All increased a large amount from 2005 to 2010 and degrees awarded to women increased much faster than the increase seen for men.

As I predicted in 2008 (Women Choosing Other Fields Over Engineering and Math) the trends continued and resulted in large imbalances in favor of women at the undergraduate level for science related degrees.

At the masters level women continue to increase degrees (nearly doubling from 2005 to 2010 excluding health). The relative gains (compared to men) at the masters level are small in that 5 year period, but it seems to me the news is mainly good. I expect women will show relative gains at the masters and PhD levels going forward, though those gains may well be slower than they were at the undergraduate level.

STEM fields continue to show large gender imbalances (with women and men dominating certain fields and being relatively rare in others). Continuing to provide opportunities for talented and interested students to explore their field of choice is important for the students well being and for the well being of society. We want to take advantage of the great minds we have and not have people excluded from pursuing their dreams.

Related: Alternative Career Paths Attract Many Women in Science FieldsThe USA is Losing Scientists and Engineers Educated in the USA

  • Recent Comments:

    • Gerd: That is really cool. I have to say that food choices change once we learn how many calories they...
    • Alice David: I liked your post and I wanna add that Sometimes we think that spider silk may be weak but it...
    • malek: Hi, you are a realy geat man. I like this your 3D Printing. I can not believe my eyes. very very...
    • Felix Erude: Being originally from Africa myself, I was absolutely thrilled to read this story. Sometimes...
    • Nirab Khan: I’m also hopping 3D printing continues to evolve. It would be incredible to just have to buy a...
    • Rahul: Wow!!!! It’s wonderful. The places are just amazing. And cats are cute. Some are scary though...
    • Bilgisayar Dünyası: Very cute.But also very wild..
    • Adela: I saw one on a expo I saw last month and I think that is very innovative and I heard that they want...
  • Recent Trackbacks:

  • Links