Posts about engineers

Earnings by College Major – Engineers and Scientists at the Top

graph of earnings by college-major

Median annual income by major based on data from the Georgetown Center On Education And The Workforce – via blog post: The Most And Least Lucrative College Majors.

As we have posted about for years engineers do very well financially. This chart shows the median income by college major (the data includes those who went on to get advanced degrees) based on data for the USA. See the data on those that only have bachelors degrees. Also see a detailed post from the Curious Cat Economics blog looking at the value of college degrees based on the Georgetown data.

Engineering holds 6 of the top spots in the graph shown above and 8 of the top spots for those that didn’t earn an advanced degree. Pharmacy-sciences-and-administration and Math-and-computer-sciences made the top 10 of both lists. Pharmacology and health-and-medical-prepatory-programs make the list when advanced degrees are included.

The highest earning major, petroleum engineering, with $120,000 doesn’t have an increase for those with advanced degrees. The 10th spot goes to electrical engineering with a $94,000 median income.

Related: No Surprise – Engineering Graduates Continue to Reign SupremeEngineering Again Dominates The Highest Paying College Degree ProgramsEngineering Majors Hold 8 of Top 10 Highest Paid MajorsThe Labor Market for Software Developers

Dennis Hong, Virginia Tech Mechanical Engineering Professor, Leading Robotics Innovation

Dennis Hong is the U.S. star in humanoid robotics

Hong came by his interest in science naturally. He was born in 1971 on the exclusive Palos Verdes Peninsula, outside Los Angeles, and his father, Yong Shik Hong, worked as an aerospace engineer at the federally funded Aerospace Corp. The family returned to Seoul in 1974 so the elder Hong could lead South Korea’s short-range missile program, at the bidding of then-President Park Chung Hee.

Korean fathers of that era were strict and remote. Hong’s father was engaged and intellectually indulgent. He installed a work bench in Dennis’s room when he was 4, complete with a hammer and saw. He led the children in chemistry experiments and brought home model airplanes from America.

Dennis Hong built things with scraps of wood and metal and bits of plastic. He disassembled toys and stored the parts in a chest beneath his bed.

“We spent a lot of time building things and breaking things,” said Julie Hong, Hong’s older sister. “He was the one who broke things the most and built things the most.”

Hong traveled to America to complete his university study, following his father’s credo, “Big fish must swim in the big sea.” He earned a bachelor’s in mechanical engineering at the University of Wisconsin and a master’s and doctorate at Purdue.

Dennis’ success illustrates several themes repeated in posts on this blog: the USA attracting talent from overseas, kids curiosity and exposure to science and engineering leading to great things, the value of strong science and engineering programs and professors. Robotics continue to progress very quickly. The economic impact of robotics is large already (largely in manufacturing) and will continue to grow dramatically. Likely robots will find their way into much more diverse areas over the next 2 decades. The Robotics and Mechanisms Laboratory, lead by Dennis Hong, seems poised to play a big role in that future.

Related: Robocup 2010, Robot FootballSoft Morphing Robot FutureEvolution of Altruism in RobotsToyota Develops Thought-controlled Wheelchair

Continue reading

Engineers are the new Currency

Silicon Vally investor discusses keys to good investment companies: “Engineers are the new currency… having the right engineers that can innovate and deliver is absolutely vital to success… It takes a great team to help the entrepreneur develop”

The video also makes the point that what separates Silicon Valley is the engineering talent.

Related: S&P 500 CEO’s: Engineers Stay at the TopEngineers Rule at HondaThe Google Way: Give Engineers RoomStatistics on Entrepreneurship

Fixers Collective

Very cool. I like everything about this idea. I like the reuse (very environmentally friendly). I like the humanity and psychology of connecting with others. I like the tinkering/learning/fixing attitude and behavior. I like the very well done use of the internet to help fund such efforts. I like the exploration of the products and object we use. I like the rejection of a disposable attitude (just throw it away). I like the appropriate technology attitude. I made a donation, you can too (see what projects I am funding).

Related: Fund Teacher’s Science ProjectsScience Toys You Can Make With Your Kidscharity related posts

Driver Thanks Engineer Who Hit Him on Purpose

Driver thanks man who hit him on purpose

Driving to a Mariners game, Duane Innes saw a pickup ahead of him drift across lanes of traffic, sideswipe a concrete barrier and continue forward on the inside shoulder at about 40 mph. A manager of Boeing’s F22 fighter-jet program [and engineer by training], Innes dodged the truck, then looked back to see that the driver was slumped over the wheel. He knew a busy intersection was just ahead, and he had to act fast.

“Basic physics: If I could get in front of him and let him hit me, the delta difference in speed would just be a few miles an hour, and we could slow down together,” Innes explained. So he pulled in front of the pickup, allowed it to rear-end his minivan and brought both vehicles safely to a stop in the pull-off lane.

Some might say the driver of the truck, 80-year-old Bill Pace, of Bellevue, and anyone Pace’s truck might have slammed into had luck on their side that day. A retiree who volunteers for Special Olympics and organizes food drives, Pace didn’t know it at the time, but he’d had a minor heart attack two days earlier and his circulation was so poor he passed out at the wheel with his foot resting on the accelerator.

Nice story and nice that the article had a tiny bit of science in the story, with another example of good work by an engineer.

Related: Nikola Tesla, A Scientist and EngineerWhat is an Engineer?Statistics Insights for Scientists and EngineersInspirational Engineer

Nikola Tesla – A Scientist and Engineer

Nikola Tesla (1856-1943) was born an ethnic Serb in the village of Smiljan, in the Austrian Empire (today’s Croatia), he was a subject of the Austrian Empire by birth and later became an American citizen. Nikoka Tesla studied electrical engineering at Technical University at Graz, Austria, and the University of Prague.

Tesla’s patents and theoretical work formed the basis of modern alternating current (AC) electric power systems, including the polyphase system of electrical distribution and the AC motor, which helped usher in the Second Industrial Revolution.

In 1882 he moved to Paris, to work as an engineer for the Continental Edison Company, designing improvements to electric equipment brought overseas from Edison’s ideas.
According to his autobiography, in the same year he conceived the induction motor and began developing various devices that use rotating magnetic fields for which he received patents in 1888.

He emigrated to the United States in 1884 and sold the patent rights to his system of alternating-current dynamos, transformers, and motors to George Westinghouse the following year.

In 1887, Tesla began investigating what would later be called X-rays using his own single terminal vacuum tubes.

Tesla introduced his motors and electrical systems in a classic paper, “A New System of Alternating Current Motors and Transformers” which he delivered before the American Institute of Electrical Engineers in 1888. One of the most impressed was the industrialist and inventor George Westinghouse.

The Tesla coil, which he invented in 1891, is widely used today in radio and television sets and other electronic equipment. Among his discoveries are the fluorescent light , laser beam, wireless communications, wireless transmission of electrical energy, remote control, robotics, Tesla’s turbines and vertical take off aircraft. Tesla is the father of the radio and the modern electrical transmissions systems. He registered over 700 patents worldwide. His vision included exploration of solar energy and the power of the sea. He foresaw interplanetary communications and satellites.

“Within a few years a simple and inexpensive device, readily carried about, will enable one to receive on land or sea the principal news, to hear a speech, a lecture, a song or play of a musical instrument, conveyed from any other region of the globe.” – Nikola Tesla, “The Transmission of Electrical Energy without wires as a means for furthering Peace” in Electrical World and Engineer (7 January 1905)

“Money does not represent such a value as men have placed upon it. All my money has been invested into experiments with which I have made new discoveries enabling mankind to have a little easier life.” – Nikola Tesla

Related: PBS – Tesla, Master of LightningWerner HeisenbergToyota Develops Thought-controlled WheelchairNeil Degrasse Tyson: Scientifically Literate See a Different World

IBM Fellow Grady Booch on the Value of Engineering?

In this webcast IBM Fellow Grady Booch discusses the critical role engineering plays in moving society forward. And he explores the history of science and engineering. This interesting webcast would be a good video to show children, or anyone, to bring out the desire to study engineering and encourage them to study so they can join the many engineers shaping our world and our future.

Related: What is an Engineer?Engineer Tried to Save His Sister and Invented a Breakthrough Medical DeviceThe Engineer That Made Your Cat a PhotographerEngineers Should Follow Their Hearts

Electric Wind

photo of William Kamkwamba on his windmillphoto of William Kamkwamba on his windmill from his blog.

I have written about William Kamkwamba before: Inspirational EngineerHome Engineering: Windmill for Electricity. And along with the post, Make the World Better, donated to his cause. His new book, The Boy Who Harnessed the Wind, is quite enjoyable and provides an interesting view of how he persevered. His talk of the famine, not being able to afford school and putting together a windmill using scrape parts and a few books from the library (donated by the American government – much better foreign aid than all the military weapons that are often counted as aid) is inspirational. And should help many sitting in luxury understand the privileged lives they lead.

“I’d become very interested in how things worked, yet never thought of this as science. In addition to radios, I’d also become fascinated by how cards worked, especially how petrol operated an engine. How does this happen? I thought? Well, that’s easy to find out – just ask someone with a car… But no one could tell me… Really how can you drive a truck and not know how it works?” (page 66)

“Using Energy, and this book has since changed my life… All I needed was a windmill, and then I could have lights. No more kerosene lamps that burned out eyes… I could stay awake at night reading instead of going to bed at seven with the rest of Malawi. But most important, a windmill could also rotate a pump for water and irrigation.” (page 158)

William set out to demonstrate his windmill for the first time to a skeptical crowd saying (page 193)

“Let’s see how crazy this boy really is.”… “Look,” someone said. “He’s made light!”… “Electric wind!” I shouted. “I told you I wasn’t mad!”

I like how the story shows how long, hard work, reading, experimenting and learning is what allowed William to success (page 194-5)

For the next month, about thirty people showed up each day to stare at the light. “How did you manage such a thing?” They asked. “Hard work and lots of research,” I’d say, trying not to sound too smug…
[to William’s father] “What an intelligent boy. Where did he get such ideas?”
“He’s been reading lots of books. Maybe from there?”
“They teach this in school?”
“He was forced to drop. He did this on his own.”
The diagram demonstrated twenty-four volts being transformed to two hundred forty. I knew voltage increased with each turn of wire. The diagram showed the primary coil to have two hundred turns, while the secondary had two thousand. A bunch of mathematical equations were below the diagram – I assumed they explained how I could make my own conversions – but instead I just wrapped like mad and hoped it would work. (page 200)
Soon I was attacking every idea with its own experiment. Over the next year, there was hardly a moment when I wasn’t planning or devising some new scheme. And though the windmill and radio transmitter had both been successes, I couldn’t say the same for a few other experiments. (page 215)

William is now attending the African Leadership Academy in South Africa, with an amazing group of classmates. See how you can support the Moving Windmills Projects.

Related: Teen’s DIY Energy Hacking Gives African Village New HopeMake the World BetterWilliam Kamkwamba on the Daily ShowWhat Kids can Learnappropriate technology

Statistics Insights for Scientists and Engineers

My father was a engineer and statistician. Along with George Box and Stu Hunter (no relation) they wrote Statistics for Experimenters (one of the potential titles had been Statistics for Engineers). They had an interest in bringing applied statistics to the work of scientists and engineers and I have that interest also. To me the key trait for applied statistics is to help experimenters learn quickly: it is an aid in the discovery process. It should not be a passive tool for analysis (which is how people often think of statistics).

José Ramírez studied applied and industrial statistics at the University of Wisconsin – Madison with my father and George Box. And now has a book and blog on taking statistics to engineers and scientists

The book is primarily written for engineers and scientists who need to use statistics and JMP to make sense of data and make sound decisions based on their analyses. This includes, for example, people working in semiconductor, automotive, chemical and aerospace industries. Other professionals in these industries who will find it valuable include quality engineers, reliability engineers, Six Sigma Black Belts and statisticians.

For those who want a reference for how to solve common problems using statistics and JMP, we walk through different case studies using a seven-step problem-solving framework, with heavy emphasis on the problem setup, interpretation, and translation of the results in the context of the problem.

For those who want to learn more about the statistical techniques and concepts, we provide a practical overview of the underpinnings and provide appropriate references. Finally, for those who want to learn how to benefit from the power of JMP, we have loaded the book with many step-by-step instructions and tips and tricks.

Related: Highlights from George Box Speech at JMP conference Nov 2009Controlled Experiments for Software SolutionsMistakes in Experimental Design and InterpretationFlorence Nightingale: The passionate statistician

Stat Insights is a blog by José and Brenda Ramírez.

Analyzing and Interpreting Continuous Data Using JMP by José and Brenda Ramírez. view chapter 1 online.

[We] have focused on making statistics both accessible and effective in helping to solve common problems found in an industrial setting. Statistical techniques are introduced not as a collection of formulas to be followed, but as a catalyst to enhance and speed up the engineering and scientific problem-solving process. Each chapter uses a 7-step problem-solving framework to make sure that the right problem is being solved with an appropriate selection of tools.

Teenage Engineer’s Company Launches Safety Stair

Young engineer launches stair aid by Geoff Adams-Spink

A young woman from Sheffield has turned a GCSE coursework project into an award-winning stair-climbing device for older and disabled people. Ruth Amos has launched her StairSteady handrail at Naidex 2008 – the annual disability exhibition in Birmingham.

She told BBC News that she was inspired to create the device for the father of one of her teachers who had had a stroke. She won an award for her idea and has now set up a company to sell it. The StairSteady is a horizontal rail at 90 degrees to the wall or banister that people can hold on to as they go up or down stairs.

The invention was then entered for the Young Engineer for Britain competition and won first prize.

Great stuff. Innovation doesn’t have to be amazing technology. Finding solutions that make people’s lives better is the key. And then showing some entrepreneurship is great, Ruth setup her company when she was 16. I wish her luck.

Related: posts on engineersEngineers Should Follow Their HeartsAutomatic Dog Washing MachineEntrepreneurial and Innovative EngineersMicrofinancing Entrepreneurs

Engineering: Cellphone Microscope

UCLA Professor Aydogan Ozcan‘s invention (LUCAS) enables rapid counting and imaging of cells without using any lenses even within a working cell phone device. He placed cells directly on the imaging sensor of a cell phone. The imaging sensor captures a holographic image of the cells containing more information than a conventional microscope. The CelloPhone received a Wireless Innovations Award from Vodafone

a wireless health monitoring technology that runs on a regular cell-phone would significantly impact the global fight against infectious diseases in resource poor settings such as in Africa, parts of India, South-East Asia and South America.

The CelloPhone Project aims to develop a transformative solution to these global challenges by providing a revolutionary optical imaging platform that will be used to specifically analyze bodily fluids within a regular cell phone. Through wide-spread use of this innovative technology, the health care services in the developing countries will significantly be improved making a real impact in the life quality and life expectancy of millions.

For most bio-medical imaging applications, directly seeing the structure of the object is of paramount importance. This conventional way of thinking has been the driving motivation for the last few decades to build better microscopes with more powerful lenses or other advanced imaging apparatus. However, for imaging and monitoring of discrete particles such as cells or bacteria, there is a much better way of imaging that relies on detection of their shadow signatures. Technically, the shadow of a micro-object can be thought as a hologram that is based on interference of diffracted beams interacting with each cell. Quite contrary to the dark shadows that we are used to seeing in the macro-world (such as our own shadow on the wall), micro-scale shadows (or transmission holograms) contain an extremely rich source of quantified information regarding the spatial features of the micro-object of interest.

By making use of this new way of thinking, unlike conventional lens based imaging approaches, LUCAS does not utilize any lenses, microscope-objectives or other bulk optical components, and it can immediately monitor an ultra-large field of view by detecting the holographic shadow of cells or bacteria of interest on a chip. The holographic diffraction pattern of each cell, when imaged under special conditions, is extremely rich in terms of spatial information related to the state of the cell or bacteria. Through advanced signal processing tools that are running at a central computer station, the unique texture of these cell/bacteria holograms will enable highly specific and accurate medical diagnostics to be performed even in resource poor settings by utilizing the existing wireless networks.

This is another great example of engineers creating technologically appropriate solutions.

Related: Better health through your cell phoneMobile Phone-based Vehicle Anti-theft SystemAppropriate Technology: Self Adjusting GlassesEngineering a Better World: Bike Corn-ShellerThe Engineer That Made Your Cat a PhotographerFreeware Wi-Fi app turns iPod into a Phone

  • Recent Comments:

    • Anders Jytzler: I love this! Imagine how much of the ocean we haven’t explored yet. Combined with...
    • Maureen Coffey: Wound healing is actually an interesting subject. Both astronauts, who though having a...
    • Anonymous: That’s great news for engineers! Although I bet there is good amount of variability for...
    • Anonymous: Neat project, thanks for sharing! Projects like this are a great opportunity for students from...
    • Roni: your article was really good thank you
    • sandybrown: RoboBoat is a powerful’s also challenges and competitive.really...
    • batu: It looks good.Planes are well now but boats are new.I hope it will development
    • Angela: Video lectures are very good. Video easily understood and clear. I love this style of expression,...
  • Recent Trackbacks:

  • Links