Posts about university research

Chimpanzees Use Spears to Hunt Bush Babies

Savanna Chimpanzees, Pan troglodytes verus, Hunt with Tools by Jill D. Pruetz and Paco Bertolani

Although tool use is known to occur in species ranging from naked mole rats to owls, chimpanzees are the most accomplished tool users. The modification and use of tools during hunting, however, is still considered to be a uniquely human trait among primates. Here, we report the first account of habitual tool use during vertebrate hunting by nonhumans. At the Fongoli site in Senegal, we observed ten different chimpanzees use tools to hunt prosimian prey in 22 bouts. This includes immature chimpanzees and females, members of age-sex classes not normally characterized by extensive hunting behavior. Chimpanzees made 26 different tools, and we were able to recover and analyze 12 of these.

Tool construction entailed up to five steps, including trimming the tool tip to a point. Tools were used in the manner of a spear, rather than a probe or rousing tool. This new information on chimpanzee tool use has important implications for the evolution of tool use and construction for hunting in the earliest hominids, especially given our observations that females and immature chimpanzees exhibited this behavior more frequently than adult males.

The full paper, from 2007, was available as a pdf when I visited (I don’t really trust these publishers and what articles by professors they will block access to later when they don’t clearly say it is open access – in fact the journal broke the link on the post I made about this in 2007 now that I checked – sigh).

The full paper isn’t filled with overly complex scientific jargon (as scientific papers can be). In that sense it is an easy read; it is a bit graphic for those that are squeamish.

Dr. Jill Pruetz maintains an interesting blog the Chimpanzees she studies: Fongoli Savanna Chimpanzee Project

Related: Chimps Used Stones as HammersOrangutan Attempts to Hunt Fish with SpearBird Using Bread as Bait to Catch FishCrows can Perform as Well as 7 to 10-year-olds on cause-and-effect Water Displacement Tasks

Scientific Inquiry Leads to Using Fluoride for Healthy Teeth

This webcast, from the wonderful SciShow, explores how we discovered fluoride helps prevent tooth decay and how we then used that knowledge and finally discovered why it worked.

I love stories of how we learn for observing what is happening. We don’t always need to innovate by thinking up creative new ideas. If we are observant we can pick up anomalies and then examine the situation to find possible explanations and then experiment to see if those explanations prove true.

When working this way we often are seeing correlation and then trying to figure out which part of the correlation is an actual cause. So in this dental example, a dentist noticed his patients had bad brown stains on their teeth than others populations did.

After investigation the natural fluoridation of the water in Colorado Springs, Colorado, USA seemed like it might be an explanation (though they didn’t understand the chemistry that would cause that result). They also explored the sense that the discolored teeth were resistant to decay.

Even without knowing why it is possible to test if the conditions are the cause. Scientists discovered by reducing the level of fluoridation in the water the ugly brown stains could be eliminated (these stains took a long time to develop and didn’t develop in adults). Eventually scientists ran an experiment in Grand Rapids, Michigan and found fluoridation of the water achieved amazing results for dental health. The practice of fluoridation was then adopted widely and resulted in greatly improved dental health.

In 1901, Frederick McKay, a recent dental school graduate, opened a dental practice in Colorado Springs, Colorado. He was interested in what he saw and sought out other dentists to explore the situation with him but had little success. In 1909, he found some success when renowned dental researcher Dr. G.V. Black collaborate with him.
Dr. H. Trendley Dean, head of the Dental Hygiene Unit at the National Institute of Health built on their work when he began investigating the epidemiology of fluorosis in 1931. It wasn’t until 1945 that the Grand Rapids test started. Science can take a long time to move forward.

Only later did scientists unravel why this worked. The fluoride reacts to create a stronger enamel than if the fluoride is not present. Which results in the enamal being less easily dissolved by bacteria.
Health tip: use a dental stimudent (dental picks) or floss your teeth to maintain healthy gums and prevent tooth decay. It makes a big difference.

Related: Why does orange juice taste so bad after brushing your teeth?Microbiologist Develops Mouthwash That Targets Only Harmful Cavity Causing BacteriaUsing Nanocomposites to Improve Dental Filling PerformanceFinding a Dentist in Chiang Mai, ThailandFalse Teeth For CatsWhy Does Hair Turn Grey as We Age?

We Have Thousands of Viruses In Us All the Time

Biology and the amazing interactions within a human body are amazing. Our bodies are teeming with other life (and almost life – viruses). All these microbes have a drastic impact on our health and those impacts are not always bad.

A Virus In Your Mouth Helps Fight The Flu

Hidden inside all of us are likely thousands of viruses — maybe more. They just hang out, harmlessly. We don’t even know they’re there.

But every once in a while, one of these viral inhabitants might help us out.

Young people infected with a type of herpes virus have a better immune response to the flu vaccine than those not infected, scientists at Stanford University report Wednesday. In mice, the virus directly stops influenza itself.

We’re talking about a ubiquitous critter, called cytomegalovirus. About half of all Americans carry it. And so do nearly 100 percent of people in developing countries.

In younger people, CMV had the opposite effect that Davis had predicted: “The virus ramped up the immune system to give better protection from pathogens,” Mark Davis says. “We tested only for the flu, but I speculate it protects against everything.”

So should we all go out and get infected with CMV? No way! Davis exclaims.

You see, CMV has a dark side. It can become dangerous if the immune system is suppressed, which happens after an organ transplant or during treatments for autoimmune disorders. CMV is also a concern for pregnant woman. It’s the top viral cause of birth defects worldwide.

The human microbiome is incredible and teams with thousands of species (bacteria, viruses, members of domain Archaea, yeasts, single-celled eukaryotes, helminth parasites and bacteriophages). The complexity of interactions between all the elements of what is in our bodies and cells is one of the things that makes health care so challenging. It is also fascinating how these interactions provide benefits and costs as they work within our bodies.

The fact that we have evolved in concert with all these interactions is one of the big problems with anti-biotics. Antibiotics are miraculous when they work, but they can also decimate our natural micro-biomes which does create risks.

I would have thought Stanford wasn’t still supporting closed science :-( Sadly this research is not published in an open science manner.

Related: Foreign Cells Outnumber Human Cells in Our BodiesMicrobes Flourish In Healthy PeopleTracking the Ecosystem Within UsPeople Have More Bacterial Cells than Human CellsCats Control Rats With ParasitesSkin Bacteria

2014 Ranking of the World’s Best Research Universities

Shanghai’s Jiao Tong University produces an annual ranking of research universities. The methodology values publications and faculty awards (Nobel and Fields) which belies the focus on ranking research not for example the quality of education provided.

You could argue one measure does partially address teaching as the Nobel and Fields prizes to alumni are created to the institution (that is separate from a measure of faculty that receive those honors). I would agree it partially measure the education though it also measures the ability of that school to attract the absolute best candidates (whether they would have been just as successful going elsewhere is a fair question).

Results from the 2014 rankings of top 500 universities with the number of schools by country:

location Top 100 % of World
Population
% of World GDP % of top 500
USA 52     4.5%   22.2%  29.2%
United Kingdom   8  0.9  3.5 7.6
Germany   4  1.1  5.0 7.8
Canada   4  0.5  2.4 4.2
France   4  0.9  3.8 4.2
Japan   3  1.8  7.8 3.8
Australia   4  0.3  1.5 3.8
China   0  19.2  11.7 8.8
Netherlands   4  0.2  1.3 2.6
Sweden   4  0.1  0.8 2.2
Switzerland   5  0.1  0.8 1.4
South Korea   0  .7  1.7 2.0
India   0  17.0  1.9 0.2

The top countries for top 100 and top 500 schools are listed above, but I skip over many after the top 7 or 8 to include a few countries I like to watch, see the ranking site for the full list. Country population and GDP data were taken from the World Development Indicators 2013, by the World Bank.

There is little change in top 100 since 2008, which I think is a good sign, it wouldn’t make much sense to have radical shifts quickly in this type of ranking. The USA lost 2 schools in the top 100, UK lost 3, Germany lost 2, Switzerland gained 2, Netherlands gain 2…

There is more change in the top 500 where changes are more sensible (there is probably not much separating schools ranked in the 300’s from those in the 500’s so variation and strong pushes (from countries like China) can have an impact. China gained 14 more schools in the top 500. China’s GDP also increased from 6.6% of global GDP to 11.7%.

University of Wisconsin – Madison is 24th, it was 17th in 2008 My father taught there while I grew up.
Continue reading

Defying Textbook Science, Study Finds Proteins Built Without DNA Instructions

Open any introductory biology textbook and one of the first things you’ll learn is that our DNA spells out the instructions for making proteins, tiny machines that do much of the work in our body’s cells. Results from a recent study show for the first time that the building blocks of a protein, called amino acids, can be assembled without blueprints – DNA and an intermediate template called messenger RNA (mRNA). A team of researchers has observed a case in which another protein specifies which amino acids are added.

“This surprising discovery reflects how incomplete our understanding of biology is,” says first author Peter Shen, Ph.D., a postdoctoral fellow in biochemistry at the University of Utah. “Nature is capable of more than we realize.”

To put the new finding into perspective, it might help to think of the cell as a well-run factory. Ribosomes are machines on a protein assembly line, linking together amino acids in an order specified by the genetic code. When something goes wrong, the ribosome can stall, and a quality control crew is summoned to the site. To clean up the mess, the ribosome is disassembled, the blueprint is discarded, and the partly made protein is recycled.

Yet this study reveals a surprising role for one member of the quality control team, a protein conserved from yeast to man named Rqc2. Before the incomplete protein is recycled, Rqc2 prompts the ribosomes to add just two amino acids (of a total of 20) – alanine and threonine – over and over, and in any order. Think of an auto assembly line that keeps going despite having lost its instructions. It picks up what it can and slaps it on.

“In this case, we have a protein playing a role similar to that filled by mRNA,” says Adam Frost, M.D., Ph.D., assistant professor at University of California, San Francisco (UCSF) and adjunct professor of biochemistry at the University of Utah. He shares senior authorship with Jonathan Weissman, Ph.D., a Howard Hughes Medical Institute investigator at UCSF, and Onn Brandman, Ph.D., at Stanford University. “I love this story because it blurs the lines of what we thought proteins could do.”

Continue reading

Lactic Acid Bacteria in Bees Counteracted Antibiotic-Resistant MRSA in Lab Experiments

13 lactic acid bacteria found in the honey stomach of bees have shown promising results as an antibiotic treatment in a series of studies at Lund University in Sweden (Open access paper: Lactic acid bacterial symbionts in honeybees – an unknown key to honey’s antimicrobial and therapeutic activities). The group of bacteria counteracted antibiotic-resistant MRSA in lab experiments. The bacteria, mixed into honey, has healed horses with persistent wounds. The formula has also previously been shown to protect against bee colony collapse.

photo of a bee on a flower

Photo by Justin Hunter

Raw honey has been used against infections for millennia, before honey – as we now know it – was manufactured and sold in stores. So what is the key to its’ antimicrobial properties? Researchers at Lund University in Sweden have identified a unique group of 13 lactic acid bacteria found in fresh honey, from the honey stomach of bees. The bacteria produce a myriad of active antimicrobial compounds.

These lactic acid bacteria have now been tested on severe human wound pathogens such as methicillin-resistant Staphylococcus aureus (MRSA), Pseudomonas aeruginosa and vancomycin-resistant Enterococcus (VRE), among others. When the lactic acid bacteria were applied to the pathogens in the laboratory, it counteracted all of them.

While the effect on human bacteria has only been tested in a lab environment thus far, the lactic acid bacteria has been applied directly to horses with persistent wounds. The LAB was mixed with honey and applied to ten horses; where the owners had tried several other methods to no avail. All of the horses’ wounds were healed by the mixture.

The researchers believe the secret to the strong results lie in the broad spectrum of active substances involved.

“Antibiotics are mostly one active substance, effective against only a narrow spectrum of bacteria. When used alive, these 13 lactic acid bacteria produce the right kind of antimicrobial compounds as needed, depending on the threat. It seems to have worked well for millions of years of protecting bees’ health and honey against other harmful microorganisms. However, since store-bought honey doesn’t contain the living lactic acid bacteria, many of its unique properties have been lost in recent times”, explains Tobias Olofsson.

This is a very cool: “When used alive, these 13 lactic acid bacteria produce the right kind of antimicrobial compounds as needed, depending on the threat.” As is the note that store bought honey doesn’t contain the living bacteria. My guess is some honey bought directly from farmers or bee-keepers, at farmer’s markets may well still have those live bacteria – but I am just guessing I may be wrong.

The next step is further studies to investigate wider clinical use against topical human infections as well as on animals.

The findings have implications for developing countries, where fresh honey is easily available, but also for Western countries where antibiotic resistance is seriously increasing.

Related: People are Superorganisms With Microbiomes of Thousands of SpeciesThe Search for Antibiotic Solutions Continues: Killing Sleeper Bacteria CellsOur Dangerous Antibiotic Practices Carry Great RisksPotential Antibiotic Alternative to Treat Infection Without Resistance
Continue reading

Crows can Perform as Well as 7 to 10-year-olds on cause-and-effect Water Displacement Tasks

In Aesop’s fable about the crow and the pitcher, a thirsty bird happens upon a vessel of water, but when he tries to drink from it, he finds the water level out of his reach. Not strong enough to knock over the pitcher, the bird drops pebbles into it — one at a time — until the water level rises enough for him to drink his fill.

Highlighting the value of ingenuity, the fable demonstrates that cognitive ability can often be more effective than brute force. It also characterizes crows as pretty resourceful problem solvers. New research conducted by UC Santa Barbara’s Corina Logan, with her collaborators at the University of Auckland in New Zealand, proves the birds’ intellectual prowess may be more fact than fiction. Her findings, supported by the National Geographic Society/Waitt Grants Program, appear today in the scientific journal PLOS ONE: Modifications to the Aesop’s Fable Paradigm Change New Caledonian Crow Performances.

photo of Corina Logan

Researcher Corina Logan with a great-tailed grackle and a night heron at the Santa Barbara Zoo. The zoo is one of the sites where Logan is gathering data to compare and contrast the cognitive abilities of grackles and New Caledonian crows.
Photo Credit: Sonia Fernandez

Logan is lead author of the paper, which examines causal cognition using a water displacement paradigm. “We showed that crows can discriminate between different volumes of water and that they can pass a modified test that so far only 7- to 10-year-old children have been able to complete successfully. We provide the strongest evidence so far that the birds attend to cause-and-effect relationships by choosing options that displace more water.”

Logan, a junior research fellow at UCSB’s SAGE Center for the Study of the Mind, worked with New Caledonian crows in a set of small aviaries in New Caledonia run by the University of Auckland. “We caught the crows in the wild and brought them into the aviaries, where they habituated in about five days,” she said. Keeping families together, they housed the birds in separate areas of the aviaries for three to five months before releasing them back to the wild.

Continue reading

iPhone Addition as Alternative to Expensive Ophthalmology Equipment

Researchers at the Stanford University School of Medicine have developed two inexpensive adapters that enable a smartphone to capture high-quality images of the front and back of the eye. The adapters make it easy for anyone with minimal training to take a picture of the eye and share it securely with other health practitioners or store it in the patient’s electronic record.

The researchers see this technology as an opportunity to increase access to eye-care services as well as to improve the ability to advise on patient care remotely.

The standard equipment used to photograph the eye is expensive — costing up to tens of thousands of dollars — and requires extensive training to use properly. Primary care physicians and emergency department staff often lack this equipment, and although it is readily available in ophthalmologists’ offices, it is sparse in rural areas throughout the world.

“Adapting smartphones for the eye has the potential to enhance the delivery of eye care — in particular, to provide it in places where it’s less accessible,” said Myung. “Whether it’s in the emergency department, where patients often have to wait a long time for a specialist, or during a primary-care physician visit, we hope that we can improve the quality of care for our patients, especially in the developing world where ophthalmologists are few and far between.”

“A picture is truly worth a thousand words,” he added. “Imagine a car accident victim arriving in the emergency department with an eye injury resulting in a hyphema — blood inside the front of her eye. Normally the physician would have to describe this finding in her electronic record with words alone. Smartphones today not only have the camera resolution to supplement those words with a high-resolution photo, but also the data-transfer capability to upload that photo securely to the medical record in a matter of seconds.

Continue reading

Looking Inside Living Cells

Johns Hopkins’ molecular biologist Jin Zhang explains how she uses light to see where and when within cells specific molecular processes occur and what happens when they go wrong.

Related: How Lysozyme Protein in Our Tear-Drops Kill BacteriaScience Explained: How Cells React to Invading VirusesNobel Prize in Physiology or Medicine 2012 for Reprogramming Cells to be PluripotentWebcast Exploring Eukaryotic Cells

Starting a Career in Science to Fight Cancer

Keven Stonewall Preventing Colon Cancer from VNM USA on Vimeo.

Keven Stonewall is a student at the University of Wisconsin – Madison working to prevent colon cancer.

Related: I Always Wanted to be Some Sort of ScientistHigh School Student Creates Test That is Much More Accurate and 26,000 Times Cheaper Than Existing Pancreatic Cancer TestsWebcast of a T-cell Killing a Cancerous Cell

Open Source Seeds

I find the current status of government granted patents to be very flawed, including patenting life.

Plant Breeders Release First ‘Open Source Seeds’

A group of scientists and food activists is launching a campaign Thursday to change the rules that govern seeds. They’re releasing 29 new varieties of crops under a new “open source pledge” that’s intended to safeguard the ability of farmers, gardeners and plant breeders to share those seeds freely.

Irwin Goldman, a vegetable breeder at the University of Wisconsin, Madison, helped organize the campaign. It’s an attempt to restore the practice of open sharing that was the rule among plant breeders when he entered the profession more than 20 years ago.

Good for them. This needs to be supported. The crazy practices of seed companies shouldn’t be legal but they pay lots of cash to politicians and the corrupt politicians (which seems to be an awful lot of them) write bad policy and encourage bad regulation.

Even those administrators taking control of universities have subjugated the search for knowledge and improvement to seek monetary gain instead of what the universities used to prioritize. It is a shame and those that have distorted universities so much should be ashamed.

Initial efforts that lead to the bad place we find universities in now were to promote the adoption of university research. To do so they partnered with business in sensible ways. Then administrators saw money was being made and turned the priority into making money and if that meant restricting the benefits to society of university research so be it. This has created universities that have lost ethical foundations and have destroyed a big part of the value universities used to provide society.

Related: Open-Source Biotech (2006)Scientists Say Biotechnology Seed Companies Prevent Research (2009)The A to Z Guide to Political Interference in ScienceArduino: Open Source Programmable HardwareMoney Is Corrupting Our Political Process

  • Recent Comments:

    • Gerd: That is really cool. I have to say that food choices change once we learn how many calories they...
    • Alice David: I liked your post and I wanna add that Sometimes we think that spider silk may be weak but it...
    • malek: Hi, you are a realy geat man. I like this your 3D Printing. I can not believe my eyes. very very...
    • Felix Erude: Being originally from Africa myself, I was absolutely thrilled to read this story. Sometimes...
    • Nirab Khan: I’m also hopping 3D printing continues to evolve. It would be incredible to just have to buy a...
    • Rahul: Wow!!!! It’s wonderful. The places are just amazing. And cats are cute. Some are scary though...
    • Bilgisayar Dünyası: Very cute.But also very wild..
    • Adela: I saw one on a expo I saw last month and I think that is very innovative and I heard that they want...
  • Recent Trackbacks:

  • Links