Posts about Science

2014 Ranking of the World’s Best Research Universities

Shanghai’s Jiao Tong University produces an annual ranking of research universities. The methodology values publications and faculty awards (Nobel and Fields) which belies the focus on ranking research not for example the quality of education provided.

You could argue one measure does partially address teaching as the Nobel and Fields prizes to alumni are created to the institution (that is separate from a measure of faculty that receive those honors). I would agree it partially measure the education though it also measures the ability of that school to attract the absolute best candidates (whether they would have been just as successful going elsewhere is a fair question).

Results from the 2014 rankings of top 500 universities with the number of schools by country:

location Top 100 % of World
Population
% of World GDP % of top 500
USA 52     4.5%   22.2%  29.2%
United Kingdom   8  0.9  3.5 7.6
Germany   4  1.1  5.0 7.8
Canada   4  0.5  2.4 4.2
France   4  0.9  3.8 4.2
Japan   3  1.8  7.8 3.8
Australia   4  0.3  1.5 3.8
China   0  19.2  11.7 8.8
Netherlands   4  0.2  1.3 2.6
Sweden   4  0.1  0.8 2.2
Switzerland   5  0.1  0.8 1.4
South Korea   0  .7  1.7 2.0
India   0  17.0  1.9 0.2

The top countries for top 100 and top 500 schools are listed above, but I skip over many after the top 7 or 8 to include a few countries I like to watch, see the ranking site for the full list. Country population and GDP data were taken from the World Development Indicators 2013, by the World Bank.

There is little change in top 100 since 2008, which I think is a good sign, it wouldn’t make much sense to have radical shifts quickly in this type of ranking. The USA lost 2 schools in the top 100, UK lost 3, Germany lost 2, Switzerland gained 2, Netherlands gain 2…

There is more change in the top 500 where changes are more sensible (there is probably not much separating schools ranked in the 300’s from those in the 500’s so variation and strong pushes (from countries like China) can have an impact. China gained 14 more schools in the top 500. China’s GDP also increased from 6.6% of global GDP to 11.7%.

University of Wisconsin – Madison is 24th, it was 17th in 2008 My father taught there while I grew up.
Continue reading

Ranking Countries by Scientific Publication Citations: USA, UK, Germany…

The SCImago Journal and Country Rank provides journal and country scientific indicators developed from the information contained in the Scopus database. I posted about this previously (in 2014, 2011 and 2008).

The data in the post is based on their data from 1996 through 2013. The web site also lets you look at these ranking by very specific categories. For example biotechnology #1 USA, #2 Germany, #3 UK, #4 Japan, #12 China or human computer interaction #1 USA, #2 Germany, #3 UK #4 Japan, #13 China).

I like looking at data and country comparisons but in doing so it is wise to remember this is the results of a calculation that is interesting but hardly definative. We don’t have the ability to measure the true scientific research output by country.

The table shows the top 6 countries by h-index and then some others I chose to list.

Country h-index 2010
h-index
2007
h-index
% of World
Population
% of World GDP total cites
USA 1,518 1,139 793     4.5%   22.2% 152,984,430
United Kingdom 918 689 465  0.9  3.5 37,450,384
Germany 815 607 408  1.1  5.0  30,644,118
France 742 554 376  0.9  3.8  21,193,343
Canada 725 536 370  0.5  2.4 18,826,873
Japan 635 527 372  1.8  7.8 23,633,462
Additional countries of interest (with 2013 country rank)
16) China 436 279 161  19.2  11.7  14,752,062
19) South Korea 375 258 161    .7  1.7  5,770,844
22) Brazil 342 239 148  2.8  3.0 4,164,813
23) India 341 227 146  17.5  2.6 5,666,045

Continue reading

Manufacture Biological Sensors Using Silk and Looms

The fabric chip platform from Achira Labs in India uses looms to manufacture biological sensors.

Image of process for creating silk test strips

image by Achira Labs

Yarn coated with appropriate biological reagents like antibodies or enzymes is woven into a piece of fabric at the desired location. Strips of fabric are then cut out, packaged and can form the substrate for di erent biological assays. Even a simple handloom could produce thousands of these sensors at very low cost.

The resulting fabrics can be used to test for pregnancy, diabetes, chronic diseases, etc.. Achira Labs, an Indian start-up, received $100,000 in Canadian funding in 2013 to develop a silk strip that can diagnose rotavirus, a common cause of diarrhea and can be used in diapers.

The company is planing to start selling silk diabetes test strips using there process this year and expects costs to be about 1/3 of the existing test strips using conventional manufacturing processes.

Related: Appropriate Technology Health Care Solution Could Save 72,000 Lives a YearWater WheelUsing Drones to Deliver Medical Supplies in Roadless AreasAppropriate Technology: Self Adjusting Glasses

Deinocheirus is a Totally Bizarre Dinosaur

A very strange dinosaur has been uncovered, studied and explained by scientists. The dinosaur is from Mongolia about 70 million years ago.

“Deinocheirus is a totally bizarre dinosaur,” explains Phil Currie, professor and Canada Research Chair in Dinosaur Paleobiology at the University of Alberta. At 11 meters long and with an estimated weight of 6.4 tons, Deinocheirus was a behemoth to be sure—but hardly the giant tyrannosaur its massive arms may have suggested. Rather, the apparently disproportionately large forearms were more likely used for digging and gathering plants in freshwater habitats, or for fishing. Among its other unusual attributes are tall dorsal spines, truncated hoof-like claws on the feet to prevent sinking into muddy ground, and bulky hind legs that indicate it was a slow mover.

“Although the arms have been known since 1965 and have always aroused speculation because of their enormous size and sharp, recurving claws, we were completely unprepared for how strange this dinosaur looks,” says Currie. “It almost appears to be a chimera, with its ornithomimid-like arms, its tyrannosaurid-like legs, its Spinosaurus-like vertebral spines, its sauropod-like hips, and its hadrosaur-like duckbill and foot-hooves.”

Currie notes that Deinocheirus is a descendant of ostrich-like dinosaurs that were only slightly larger than humans, so its evolution into a giant, multi-tonne creature is almost certainly responsible for most of its unusual characteristics. “Its great size probably gave it some protection from the tyrannosaurid Tarbosaurus, which appears to have been relatively common in that part of Mongolia some 70 million years ago,” says Currie. To feed its great bulk, Deinocheirus was apparently an omnivore that ingested both plants and fish, as evident from fish remains found in its stomach contents.

“The study of this specimen has shown that even in dinosaurs like Deinocheirus, an animal that has been known for almost half a century, we can still learn surprising things about their anatomy,” says Currie. “Furthermore, it underlines the fact that even today, dinosaurs are still relatively poorly known. The fact that Deinocheirus is from the Nemegt Formation of Mongolia, one of the richest and most diverse dinosaur faunas known, hints that there are probably thousands of dinosaurs that we still do not know about from the majority of dinosaur localities in the world.”

Including poached dinosaur bones (stealing bones has long been a problem to the advancement of science) with the existing bones available to scientists allowed the new understanding of this amazing dinosaur. The now near-complete Deinocheirus specimen has been returned to its home for further study in the Mongolia Centre for Paleontology.

Full press release

Related: Ancient Whale Uncovered in Egyptian DesertNigersaurus, the Mesozoic CowDinosaur Remains Found with Intact Skin and TissueLobopodians from China (“the walking cactus” – an animal)Korea-Mongolia International Dinosaur Project

Epigenetics, Scientific Inquiry and Uncertainty

Science is full of fascinating ideas. Epigenetics is one area I find particularly interesting. This previous post has a few links to learning more: DNA Passed to Descendants Changed by Your Life.

Angela Saini is one 109 people I follow on Twitter. I don’t see the point in “following” people on Twitter that you have no interest in, I only follow the small number of people that post Tweets I want to read.

In, Epigenetics: genes, environment and the generation game, Angela Saini looks at the confused state of current scientific understand now. It is very difficult to tell if, and if so, to what extent, epigenetic inheritance happens in people.

Professor Azim Surani, a leading developmental biologist and geneticist at the University of Cambridge, adds that while there is good evidence that epigenetic inheritance happens in plants and worms, mammals have very different biology. Surani’s lab carried out thorough studies on how epigenetic information was erased in developing mouse embryos and found that “surprisingly little gets through” the reprogramming process.

Professor Timothy Bestor, a geneticist at Columbia University in New York, is far more damning, claiming that the entire field has been grossly overhyped. “It’s an extremely fashionable topic right now. It’s very easy to get studies on transgenerational epigenetic inheritance published,” he says, adding that all this excitement has lowered critical standards.

Related: Epigenetic Effects on DNA from Living Conditions in Childhood Persist Well Into Middle AgeMedical Study Findings too Often Fail to Provide Us Useful KnowledgeScientific Inquiry Process Finds That Komodo Dragons Don’t have a Toxic Bite After All

Continue reading

Lactic Acid Bacteria in Bees Counteracted Antibiotic-Resistant MRSA in Lab Experiments

13 lactic acid bacteria found in the honey stomach of bees have shown promising results as an antibiotic treatment in a series of studies at Lund University in Sweden (Open access paper: Lactic acid bacterial symbionts in honeybees – an unknown key to honey’s antimicrobial and therapeutic activities). The group of bacteria counteracted antibiotic-resistant MRSA in lab experiments. The bacteria, mixed into honey, has healed horses with persistent wounds. The formula has also previously been shown to protect against bee colony collapse.

photo of a bee on a flower

Photo by Justin Hunter

Raw honey has been used against infections for millennia, before honey – as we now know it – was manufactured and sold in stores. So what is the key to its’ antimicrobial properties? Researchers at Lund University in Sweden have identified a unique group of 13 lactic acid bacteria found in fresh honey, from the honey stomach of bees. The bacteria produce a myriad of active antimicrobial compounds.

These lactic acid bacteria have now been tested on severe human wound pathogens such as methicillin-resistant Staphylococcus aureus (MRSA), Pseudomonas aeruginosa and vancomycin-resistant Enterococcus (VRE), among others. When the lactic acid bacteria were applied to the pathogens in the laboratory, it counteracted all of them.

While the effect on human bacteria has only been tested in a lab environment thus far, the lactic acid bacteria has been applied directly to horses with persistent wounds. The LAB was mixed with honey and applied to ten horses; where the owners had tried several other methods to no avail. All of the horses’ wounds were healed by the mixture.

The researchers believe the secret to the strong results lie in the broad spectrum of active substances involved.

“Antibiotics are mostly one active substance, effective against only a narrow spectrum of bacteria. When used alive, these 13 lactic acid bacteria produce the right kind of antimicrobial compounds as needed, depending on the threat. It seems to have worked well for millions of years of protecting bees’ health and honey against other harmful microorganisms. However, since store-bought honey doesn’t contain the living lactic acid bacteria, many of its unique properties have been lost in recent times”, explains Tobias Olofsson.

This is a very cool: “When used alive, these 13 lactic acid bacteria produce the right kind of antimicrobial compounds as needed, depending on the threat.” As is the note that store bought honey doesn’t contain the living bacteria. My guess is some honey bought directly from farmers or bee-keepers, at farmer’s markets may well still have those live bacteria – but I am just guessing I may be wrong.

The next step is further studies to investigate wider clinical use against topical human infections as well as on animals.

The findings have implications for developing countries, where fresh honey is easily available, but also for Western countries where antibiotic resistance is seriously increasing.

Related: People are Superorganisms With Microbiomes of Thousands of SpeciesThe Search for Antibiotic Solutions Continues: Killing Sleeper Bacteria CellsOur Dangerous Antibiotic Practices Carry Great RisksPotential Antibiotic Alternative to Treat Infection Without Resistance
Continue reading

The Feynman Lectures on Physics Available Online

The Feynman Lectures on Physics are now available to read online. They are a great collection of lectures covering physics and touching on many areas including: the Mechanisms of Seeing, Semiconductors and Algebra. This is a fantastic resource for learning about physics.

You can also get a boxed set of The Feynman Lectures on Physics for those that like paper. It is fantastic but not cheap.

Bill Gates bought the rights to the rights to The Character of Physical Law, 7 lectures Feynman gave at Cornell University (these are separate from the lectures listed above) and made them available online, which is great. Unfortunately the website is based on Microsoft tools and therefore quite a bother for many (or maybe even impossible with Linux computers – I am not sure). I guess since he made all his money via Microsoft it isn’t that surprising but it would have been nice if he provide the content in a more easily accessible way (even if they didn’t do the fancy additions they did on the Microsoft site. These are great enough videos to probably be worth the bother of installing proprietary Microsoft software in order to view them.

Related: Video of Young Richard Feynman Talking About Scientific ThinkingFeynman “is a second Dirac, only this time human” (Oppenheimer) – Classic Feynman: All the Adventures of a Curious Character

Why do Bats Transmit so Many Diseases like Ebola?

Bats are generally wonderful creatures and helpful to us. For example, they eat lots of insects that are annoying (like mosquitoes) and pollinate lots of plants. Of course, they also eat lots of good (for us humans) insects but the insects still seem to be able to fulfill their environmental niches so all is good.

And they are flying mammals which is, of course, cool.

But bats also transmit virus to us, which do us lots of damage. As the video explains as we have intruded into bat territory and chopped down their natural feeding spots we have come into contact with them more. And because bats evolved to be very resilient to virus and they live in large colonies (for easy transmission of the viruses to lots of bats) they can host viruses and survive long enough to infect lots of other bats, and to infect us if we meet them.

I actually didn’t know this (mentioned in the video): most viruses have a very difficult time surviving even with temperatures a bit above the normal human temperature (98 degrees Fahrenheit). Bats, while they fly, have internal temperatures that soar to 104 degrees (40 degrees centigrade) which kills off most viruses, but certain hardy viruses survive. This also explains why we run fevers when we are sick (which then can kill off viruses) – which I am sure I learned at some point but I forgot. But for the bat viruses that strategy doesn’t work.

Bats, of course, are not impervious to disease. In the USA a disease has killed more than 90 percent of the cave bats in Eastern states.

One of the causes of the current ebola outbreak is believed to be people eating bats in West Africa.

Related: Ebola Outbreak in Uganda (2007)A Breakthrough Cure for Ebola (2010)Swine Flu: a Quick Overview (2009)

Continue reading

Massive Blast of Measles Vaccine Wiped Out Cancer In Study

Unfortunately these stories are not uncommon but the hoped for follow through of practical solutions that work at all are rare. But we keep learning and while the breakthroughs based on these news stories is rare we do keep finding new and better methods to cope with health issues.

Mayo Clinic trial: Massive blast of measles vaccine wipes out cancer

Stacy Erholtz was out of conventional treatment options for blood cancer last June when she underwent an experimental trial at the Mayo Clinic that injected her with enough measles vaccine to inoculate 10 million people.

The 50-year-old Pequot Lakes mother is now part of medical history.

The cancer, which had spread widely through her body, went into complete remission and was undetectable in Erholtz’s body after just one dose of the measles vaccine, which has an uncanny affinity for certain kinds of tumors.

Erholtz was one of just two subjects in the experiment and the only one to achieve complete remission. But the experiment provides the “proof of concept” that a single, massive dose of intravenous viral therapy can kill cancer by overwhelming its natural defenses, according to Dr. Stephen Russell, a professor of molecular medicine who spearheaded the research at Mayo.

Researchers have known for decades that viruses can be used to destroy cancer. They bind to tumors and use them as hosts to replicate their own genetic material; the cancer cells eventually explode and release the virus. Antiviral vaccines that have been rendered safe can produce the same effects and can also be modified to carry radioactive molecules to help destroy cancer cells without causing widespread damage to healthy cells around the tumors. The body’s immune system then attacks any remaining cancer that carries remnants of the vaccine’s genetic imprint.

Mayo started out giving patients 1 million infectious units and gradually cranked up the dosage — but it didn’t work until Erholtz and another patient were injected with 100 billion infectious units, he said.

While the treatment worked in Erholtz, whose tumors were primarily in her bone marrow, the results weren’t sustained in the second patient, whose tumors were largely confined to her leg muscles. Russell said researchers need to study how the nature of the tumor affects the lethality of the virus.

One challenge of health research on fatal health conditions is that the experimentation with people is usually limited to people that have no available options left from the approved treatments. So, in general they are very sick. And the great complexity of dealing with human immune systems, the variation in the disease and in people create a very difficult research environment. Thankfully we have many great scientists dedicated to finding new treatments.

Related: Virus Kills Breast Cancer Cells in LaboratoryVirus Engineered To Kill Deadly Brain TumorsUsing Bacteria to Carry Nanoparticles Into CellsWebcast of a T-cell Killing a Cancerous Cell

Science Explained: How Cells React to Invading Viruses

This illustrated webcast introduces the microscopic arsenal of weapons and warriors that play a role in the battle for your health.

TED education has been putting out some good videos which is a wonderful thing to see. It is wonderful to let people everywhere (kids and adults) that are interested in learning (and that have internet access) can learn about the world around us. Traditional educational institutions have not done much with this opportunity to broaden their impact.

The video looks at the cells reaction to a virus infiltrating the cell.

Related: Cells AliveScience Explained: Cool Video of ATP Synthase, Which Provides Usable Energy to UsThis webcast is packed with information on the makeup and function of eukaryotic (animal) cellsCool Animation of a Virus Invading a Person’s BodyCell Aging and Limits Due to TelomeresWebcast of a T-cell Killing a Cancerous Cell

How Healthy Is Squid for Us?

I try to eat healthfully, especially when I can tweak what I eat to gain a health advantage. I know fish have good qualities. I live in Malaysia now and squid (called sotong here) is often available. I often prefer squid to fish here as the fish use here are often fairly small with bones to deal and not much meat for the effort (it is great sometimes but I am often lazy).

photo of squid dinner

Sambal Sotong (squid) with bitter gourd (home delivery). Very tasty. The bitter gourd is very bitter, but a few bites are ok.

So I looked online for some details, it wasn’t as easy I would have hoped. The Shellfish Association of Great Britain offered a good overview.

They say 100g of raw squid (pre cooking weight) provides about 200% of Vitamin B12, 100% of Selenium, 80% of Copper, 50% of Vitamin B6, 35% of Vitamin E, 34% of Phosphorous, 30 % of Protein, 20% of Niacin, 10% of B1 (Thiamin), 8% of Potassium, 10% of Magnesium, 14% of Zinc.

From various sources online it seems there are 92 calories in 100 grams of Squid with a calorie breakdown of 72% protein, 14% fat and 14% carbs.

From the Heart Association of Australia “omega-3s are found primarily in oily fish, such as Atlantic and Australian salmon, blue-eye trevalla, blue mackerel, gem fish… Other fish such as barramundi, bream or flathead, and seafood such as arrow squid, scallops and mussels, are also good sources of omega-3… To reduce the risk of heart disease, the Heart Foundation recommends that Australian adults consume about 500 milligrams of omega-3 (marine source) every day.”

Continue reading

  • Recent Comments:

    • Robin: I vouch for a common system, which stands to be the SI one but as you’ve mentioned Imperial...
    • Kanbaz: RoboBoat is very very amazing project… Really Awesome project.. I like IT , thanks :D
    • Ram: I use this device, oud two years. To be honest, the device handles, but requires supervision. The...
    • rahul: This would surely do a lot more good to people. An innovative invention. You blog is truley awesome....
    • Adrian: Interesting to see, but I actually had a question – where could we find the whole list of the...
    • Singh: Hello, That is really good news for engineers like me. Thanks for such good news.
    • Anders Jytzler: I didn’t know bats transmitted so many diseases. I actually thought that rats were...
    • Andy: John, I think one of the reasons that the UK has not gone metric is that the US still uses the old...
  • Recent Trackbacks:

  • Links