Currently browsing the Funding Category


Nobel Prize Winner Criticizes Role of Popular Science Journals in the Scientific Process

Randy Schekman, 2013 Nobel Prize winner in physiology or medicine has written another critique of the mainstream, closed-science journals. How journals like Nature, Cell and Science are damaging science

Mine is a professional world that achieves great things for humanity. But it is disfigured by inappropriate incentives. The prevailing structures of personal reputation and career advancement mean the biggest rewards often follow the flashiest work, not the best. Those of us who follow these incentives are being entirely rational – I have followed them myself – but we do not always best serve our profession’s interests, let alone those of humanity and society.

We all know what distorting incentives have done to finance and banking. The incentives my colleagues face are not huge bonuses, but the professional rewards that accompany publication in prestigious journals – chiefly Nature, Cell and Science.

There is a better way, through the new breed of open-access journals that are free for anybody to read, and have no expensive subscriptions to promote. Born on the web, they can accept all papers that meet quality standards, with no artificial caps. Many are edited by working scientists, who can assess the worth of papers without regard for citations. As I know from my editorship of eLife, an open access journal funded by the Wellcome Trust, the Howard Hughes Medical Institute and the Max Planck Society, they are publishing world-class science every week.

Just as Wall Street needs to break the hold of the bonus culture, which drives risk-taking that is rational for individuals but damaging to the financial system, so science must break the tyranny of the luxury journals. The result will be better research that better serves science and society.

Very well said. The closed access journal culture is damaging science in numerous ways. We need to stop supporting those organizations and instead support organizations focused more on promoting great scientific work for the good of society.

Related: Fields Medalist Tim Gowers Takes Action To Stop Cooperating with Anti-Open Science CartelScience Journal Publishers Stay StupidHarvard Steps Up Defense Against Abusive Journal PublishersThe Future of Scholarly Publication (2005)The Trouble with Incentives: They WorkWhen Performance-related Pay BackfiresRewarding Risky Behavior

Anti-Science Politics in Australia, Canada and the UK

Age of Unreason by George Monbiot

The governments of Britain, Canada and Australia are trying to stamp out scientific dissent.

in Canada… scientists with government grants working on any issue that could affect industrial interests – tar sands, climate change, mining, sewage, salmon farms, water trading – are forbidden to speak freely to the public(17,18,19). They are shadowed by government minders and, when they must present their findings, given scripts to memorise and recite(20). Dozens of turbulent research programmes and institutes have either been cut to the bone or closed altogether(21).

In Australia, the new government has chosen not to appoint a science minister(22). Tony Abbott, who once described manmade climate change as “absolute crap”(23), has already shut down the government’s Climate Commission and Climate Change Authority(24).

Follow the link for sources. Sadly governments are fighting for the crown of how anti-science they can be. It isn’t a matter of the countries that are doing a good job and a better job of using scientific understanding to aid in policy decisions. It is a matter of how extreme the anti-science crowds are in each country.

Trashing the scientific method and the use of scientific knowledge to pursue a pre-determined political agenda is a foolhardy action putting political expediency above effectiveness. Making political judgement, considering the available scientific research is fine, and will result in some people being upset. But the extremely bad process behind ignoring and intentionally sabotaging the use of data and scientific thinking is extremely harmful to society.

Every man has a right to his own opinion, but no man has a right to be wrong in his facts.
– Bernard Baruch (Daniel Patrick Moynihan said something very similar later)

Related: The Politics of Anti-Science (USA focus)Science and Engineering in PoliticsStand with Science: Late is Better than NeverScience and Engineering in Global Economics

Scientific Research Spending Cuts in the USA and Increases Overseas are Tempting Scientists to Leave the USA

Unlimited Potential, Vanishing Opportunity

Globally, the United States invests more real dollars in research and development than any other country. However, in terms of percentage of gross domestic product, the United States is reducing its investment in scientific research. In fact, of the 10 countries investing the most money in scientific research, the United States is the only country that has reduced its investment in scientific research as a percentage of GDP since 2011.

The study by 16 scientific societies surveyed 3,700 scientists in the USA. As a result of the difficult research funding environment 20% of the scientists are considering going overseas to continue their research careers.

I have written about the likelihood of the USA’s leadership position in science, engineering and technology diminishing. As I stated (see links below), it seemed obvious many other countries were more committed to investing in science now than the USA was (which is different than decades ago when the USA was the country most committed). Various factors would determine how quickly others would shrink the USA’s lead including whether they could setup the infrastructure (scientific, social and economic) and how much damage the anti-science politicians elected in the USA do.

The advantages of being the leader in scientific and engineering research and development are huge and long term. The USA has been coasting on the advantages built up decades ago and the benefits still poor into the USA economy. However, the USA has continued to take economically damaging actions due to the anti-science politics of many who we elect. That is going to be very costly for the USA. The losses will also accelerate sharply when the long term investments others are making bear significant fruit. Once the economic impact is obvious the momentum will continue in that direction for a decade or two even if the USA finally realizes the mistake and learns to appreciate the importance of investing in science.

The good news is that many other countries are making wise investments in science. Humanity will benefit from those investments. The downside of the decisions to cut investments in science (and to actively ignore scientific knowledge) in the USA are largely to move much of the economic gains to other countries, which is regrettable for the future economy of the USA.

Related: Economic Strength Through Technology LeadershipScience, Engineering and the Future of the American EconomyGlobal Scientific LeadershipCompetition to Create Scientific Centers of ExcellenceEngineering the Future EconomyWorldwide Science and Engineering Doctoral Degree Data (2005)

Medical Study Findings too Often Fail to Provide Us Useful Knowledge

There are big problems with medical research, as we have posted about many times in the past. A very significant part of the problem is health care research is very hard. There are all sorts of interactions that make conclusive results much more difficult than other areas.

But failures in our practices also play a big role. Just poor statistical literacy is part of the problem (especially related to things like interactions, variability, correlation that isn’t evidence of causation…). Large incentives that encourage biased research results are a huge problem.

Lies, Damned Lies, and Medical Science

He discovered that the range of errors being committed was astonishing: from what questions researchers posed, to how they set up the studies, to which patients they recruited for the studies, to which measurements they took, to how they analyzed the data, to how they presented their results, to how particular studies came to be published in medical journals. The systemic failure to do adequate long term studies once we approve drugs, practices and devices are also a big problem.

This array suggested a bigger, underlying dysfunction, and Ioannidis thought he knew what it was. “The studies were biased,” he says. “Sometimes they were overtly biased. Sometimes it was difficult to see the bias, but it was there.” Researchers headed into their studies wanting certain results—and, lo and behold, they were getting them. We think of the scientific process as being objective, rigorous, and even ruthless in separating out what is true from what we merely wish to be true, but in fact it’s easy to manipulate results, even unintentionally or unconsciously. “At every step in the process, there is room to distort results, a way to make a stronger claim or to select what is going to be concluded,” says Ioannidis. “There is an intellectual conflict of interest that pressures researchers to find whatever it is that is most likely to get them funded.”

Another problem is that medical research often doesn’t get the normal scientific inquiry check of confirmation research by other scientists.

Most journal editors don’t even claim to protect against the problems that plague these studies. University and government research overseers rarely step in to directly enforce research quality, and when they do, the science community goes ballistic over the outside interference. The ultimate protection against research error and bias is supposed to come from the way scientists constantly retest each other’s results—except they don’t. Only the most prominent findings are likely to be put to the test, because there’s likely to be publication payoff in firming up the proof, or contradicting it.

Related: Statistical Errors in Medical StudiesMedical Study Integrity (or Lack Thereof)Contradictory Medical Studies (2007)Does Diet Soda Result in Weight Gain?

Appropriate Technology Health Care Solution Could Save 72,000 Lives a Year

We need more medical solutions that serve the majority of humanity instead of just the rich. Some medical research is innately costly and therefore require large costs to pay back the investment. But too little concern is shown for solutions that help people (with so much focus only on solutions that will make organizations rich).

Cheap vinegar test cut cervical cancer deaths in India; could help many poor countries

This low-tech visual exam cut the cervical cancer death rate by 31 percent, the study found. It could prevent 22,000 deaths in India and 72,600 worldwide each year, researchers estimate.

More progress against cervical cancer may come from last month’s announcement that two companies will drastically lower prices on HPV vaccines for poor countries. Pilot projects will begin in Asia and Africa; the campaign aims to vaccinate more than 30 million girls in more than 40 countries by 2020.

India continues to invest in medical research for solutions that are affordable to a majority of the world. The rich health care companies largely neglect the majority to focus on the most wealthy.

Related: Using Available Technology (Cellphone) as a MicroscopeDangerous Drug-Resistant Strains of TB are a Growing Threat‘Refrigerator’ Without Electricity

System for Approving New Medical Options Needs Improvement

Something Doesn’t Add Up

Not only did the team find that evidence for Infuse’s benefits over existing alternatives for most patients was questionable; they also discovered in a broad array of published research that risks of complications (including cancer, male sterility and other serious side effects) appeared to be 10 to 50 times higher than 13 industry-sponsored studies had shown. And they learned that authors of the early studies that found no complications had been paid between $1 million and $23 million annually by the company for consulting, royalties and other compensation. Carragee, MD ’82, estimates Medtronic has sold several billion dollars’ worth of Infuse for uses both approved and “off label.”

Without a rigorous, data-driven context, medicine’s expensive traditions and hunch-based treatments threaten to bankrupt us. “People say that we shouldn’t delay science; people are dying; we should get new treatments out there. I do not feel the pressure to do that until we have solid evidence,” Ioannidis asserts. “The resources many procedures draw are enormous.” And that leaves insufficient funds for the prevention plans and treatments we know actually work.

I have written about the problems with our health care research system several times. The existing system is in need of improvement and is made much worse by the general state of the broken health care system in the USA. Dr. John P.A. Ioannidis, the focus of the article, is doing fantastic work in this area.

Related: Majority of Clinical Trials Don’t Provide Meaningful EvidenceStatistical Errors in Medical StudiesUSA Spends $7,960 Compared to Around $3,800 for Other Rich Countries on Health Care with No Better Health ResultsDrug Company Funding Taints Published Medical ResearchMistakes in Experimental Design and InterpretationUnderstanding Data

Drug Company Funding Taints Published Medical Research

Science provide the opportunity for us to achieve great benefits for society. However, especially in medical research money can make what are already very difficult judgments even less reliable. Add that to a very poor understanding of science in those we elect and you have a dangerous combination. That combination is one of the largest risks we face and need to manage better. I wish we would elect people with a less pitiful appreciation for science but that doesn’t seem likely. That makes doing a better job of managing the conflicts of interest money puts into our current medical research a top priority.

How Drug Company Money Is Undermining Science by Charles Seife

In the past few years the pharmaceutical industry has come up with many ways to funnel large sums of money—enough sometimes to put a child through college—into the pockets of independent medical researchers who are doing work that bears, directly or indirectly, on the drugs these firms are making and marketing. The problem is not just with the drug companies and the researchers but with the whole system—the granting institutions, the research labs, the journals, the professional societies, and so forth. No one is providing the checks and balances necessary to avoid conflicts.

Peer-reviewed journals are littered with studies showing how drug industry money is subtly undermining scientific objectivity. A 2009 study in Cancer showed that participants somehow survived longer when a study’s authors had conflicts of interest than when the authors were clean. A 1998 study in the New England Journal of Medicine found a “strong association” between researchers’ conclusions about the safety of calcium channel blockers, a class of drugs used to reduce blood pressure, and their financial relationships with the firms producing the drugs.

Most of those in the system have an interest in minimizing an effort to clean this up. It is just more work they don’t want to do. Or it goes directly against their interest (drug companies that want to achieve favorable opinions by buying influence). The main political message in the USA for a couple decades has been to reduce regulation. Allowing research that is tainted because you find regulation politically undesirable is a bad idea. People that understand science and how complex medical research is appreciate this.

Sadly when we elect people that by and large are scientifically illiterate they don’t understand the risks of the dangerous practices they allow. Even if they were scientifically illiterate but understood their ignorance they could do a decent job by getting scientific consultation from experts but they don’t (to an extent they listen to the scientists that those that give them lots of money tell them to which does help make sure those giving the politicians cash have their interests served but it is not a good way to create policy with the necessary scientific thinking needed today).

Related: Problems with the Existing Funding System for Medical ResearchMedical Study Integrity (or Lack Thereof)Merck and Elsevier Publish Phony Peer-Review JournalAnti-Science PoliticsStand with Science, Late is Better than Never

Smoking Bans at Work and Public Places Result in Significant Drops in Hospitalization for Heart Attacks, Strokes and Asthma.

Laws that end smoking at work and other public places result in significantly fewer hospitalizations for heart attacks, strokes, asthma and other respiratory conditions, a new UCSF analysis has found.

The research provides evidence that smoke-free laws that cover workplaces, restaurants and bars have the biggest impacts on hospitalizations, reduce health care costs and also raise quality of life, the researchers said. The research is published in closed science journal; for an “association” (when you act as though your focus is just growing your income I have trouble seeing the claim for being an association as legitimate) to do that is particularly pitiful. Adding to the sad commentary on the lack of respect for open scient this is research done by a “public” university with grants from the federal government. So sad how little some that should care about science do when it conflicts with their outdated notions of how to publicize research. We really should not tolerate such behavior.

“The public, health professionals, and policy makers need to understand that including exemptions and loopholes in legislation — such as exempting casinos — condemns more people to end up in emergency rooms,” said senior author Stanton A. Glantz, UCSF professor of medicine and director of the Center for Tobacco Control Research and Education at UCSF. “These unnecessary hospitalizations are the real cost of failing to enact comprehensive smoke-free legislation,” he said.

The inquiry consisted of a meta-analysis of 45 studies published prior to Nov. 30, 2011. Altogether, the research covered 33 different smoke-free-laws in cities and states around the United States as well as several countries, including New Zealand and Germany. The laws variously prohibit smoking in such public spots as restaurants, bars, and the workplace.

The authors found that comprehensive smoke-free laws were followed rapidly by significantly lower rates of hospital admissions than before the laws went into force:

  • A 15% drop in heart attack hospitalizations;
  • A 16% drop in stroke hospitalizations;
  • A 24% drop in hospitalizations for respiratory diseases including asthma and chronic obstructive pulmonary disease.

Continue reading

2011 MacArthur Fellows

2011 MacArthur Fellows

Elodie Ghedin (in video) is a biomedical researcher who is harnessing the power of genomic sequencing techniques to generate critical insights about human pathogens. A major focus of her work has been parasites that cause diseases endemic to tropical climates, such as leishmaniasis, sleeping sickness, Chagas disease, elephantiasis, and river blindness.

More scientists given the $500,000 award: Markus Greiner, Condensed Matter Physicist, Harvard University; Sarah Otto, Evolutionary Geneticist, University of British Columbia; Shwetak Patel, Sensor Technologist & Computer Scientist, University of Washington; Kevin Guskiewicz, Department of Exercise & Sport Science, University of North Carolina; Melanie Sanford, Organometallic Chemist, University of Michigan; Matthew Nock, Clinical Psychologist, Harvard University; Yukiko Yamashita, Developmental Biologist, University of Michigan; William Seeley, Neurologist, University of California, San Francisco.

Related: 2008 MacArthur FellowsPresidential Early Career Awards for Scientists and EngineersNew Physics Prize Gives 9 Physicists $3 million Each2011 Nobel Prize in Chemistry

Largest Google Summer of Code Ever

Google summer of code allows college students to work on open source software projects during the summer and get a $5,000 stipend from Google.

Google Summer of Code 2012 by the Numbers

This 8th year of Google Summer of Code is the largest yet. More mentoring organizations received more applications from more students than ever before. We received a record number of applications – 6685 – from 4258 students from 98 countries to work with the 180 selected mentoring organizations.

We also accepted more students this year: 1,212 from 69 countries. This year India supplied the largest number of students, 227.

USA has 172 students, Germany 72, Russia 56 and China 45. This year set the highest percentage of women (self identified) yet. Guess what percentage. If you guessed 8.3% you are right.

Projects from the following organizations/software projects are included this year: Apache Software Foundation, Debian Project, Electronic Frontier Foundation/The Tor Project, GIMP, haskell.org, The JRuby Project, OpenStreetMap, Python Software Foundation, R project for statistical computing, Twitter, Wikimedia Foundation.

Google provides a stipend of 5,000 USD to the student and $500 to the mentoring organization. That puts Google’s support at over $6,500,000 this year.

Related: Google Summer of Code is Accepting Applications (2011)Google Summer of Code 2009Google Summer of Code 2007

Using Nanocomposites to Improve Dental Filling Performance

After a dentist drills out a decayed tooth, the cavity still contains residual bacteria. Professor Huakun (Hockin) Xu says it is not possible for a dentist to remove all the damaged tissue, so it’s important to neutralize the harmful effects of the bacteria, which is just what the new nanocomposites are able to do.

Rather than just limiting decay with conventional fillings, the new composite he has developed is a revolutionary dental weapon to control harmful bacteria, which co-exist in the natural colony of microorganisms in the mouth.

“Tooth decay means that the mineral content in the tooth has been dissolved by the organic acids secreted by bacteria residing in biofilms or plaques on the tooth surface. These organisms convert carbohydrates to acids that decrease the minerals in the tooth structure,” says Xu, director of the Division of Biomaterials and Tissue Engineering in the School’s Department of Endodontics, Prosthodontics and Operative Dentistry.

The researchers also have built antibacterial agents into primer used first by dentists to prepare a drilled-out cavity and into adhesives that dentists spread into the cavity to make a filling stick tight to the tissue of the tooth. “The reason we want to get the antibacterial agents also into primers and adhesives is that these are the first things that cover the internal surfaces of the tooth cavity and flow into tiny dental tubules inside the tooth,” says Xu.

The main reason for failures in tooth restorations, says Xu, is secondary caries or decay at the restoration margins. Applying the new primer and adhesive will kill the residual bacteria, he says.

Continue reading

  • Recent Comments:

    • Anonymous: Amazing and confusing at the same time to see a cat skateboarding, and being able to jump off of...
    • Patrick Hollingworth: I do agree. Thanks for sharing your thoughts. I have read once that curiosity can...
    • syed ahad: I have a horse.I think your article is very useful for me. thanks for your article
    • Chem: I take pride in studying in chemical engineering
    • Michael: This is a truly beautiful design idea: simple, functional, and useful. I had’nt heard of the...
    • Michael: I love projects like this but I can’t imagine that the wind turbine was a justifiable...
    • xay dung dan dung: Science develops, more people to enjoy the novelty. Sometimes life around us there are...
    • Anonymous: The Link the Feynman videos seems to be working both with IE and FF, provided you have the...
  • Recent Trackbacks:

  • Links