Currently browsing the Life Science Category

Posts covering topics such as: biology, genetics, viruses, health care...
Recommended posts: Complete Work of Charles Darwin Online - The Inner Life of a Cell - Feed your Newborn Neurons - New Understanding of Human DNA - Bye Bye Bees - Energy Efficiency of Digestion - Microbe Types

The Challenge of Protecting Us from Evolving Bacterial Threats

I have long been concerned about the practices we continue to use increasing the risks of “superbugs.” I have written about this many times, including: The Overuse of Antibiotics Carries Large Long Term Risks (2005)Are you ready for a world without antibiotics? (2010), Antibiotics Breed Superbugs Faster Than Expected (2010), Entirely New Antibiotic (platensimycin) Developed (2006), Our Poor Antibiotic Practices Have Sped the Evolution of Resistance to Our Last-Resort Antibiotic (2015).

I do also believe the wonderful breakthroughs we make when we invest in science and engineering have made our lives much better and have the potential to continue to do so in many ways, including in dealing with the risks of superbugs. But this is something that requires great effort by many smart people and a great deal of money. It will only happen if we put in the effort.

Winning war against ‘superbugs’

hey won this particular battle, or at least gained some critical intelligence, not by designing a new antibiotic, but by interfering with the metabolism of the bacterial “bugs” — E. coli in this case — and rendering them weaker in the face of existing antibiotics

ROS, or “reactive oxygen species,” include molecules like superoxide and hydrogen peroxide that are natural byproducts of normal metabolic activity. Bacteria usually cope just fine with them, but too many can cause serious damage or even kill the cell. In fact, Collins’ team revealed a few years ago the true antibiotic modus operandi: they kill bacteria in part by ramping up ROS production.

We need to continue to pursue many paths to protecting us from rapidly evolving bacterial risks. Many promising research results will fail to produce usable solutions. We need to try many promising ideas to find useful tools and strategies to protect human health.

US Fish and Wildlife Service Plans to Use Drones to Drop Vaccine Treats to Save Ferrets

Despite significant recovery successes, the black-footed ferret remains one of the most endangered animals in the world.

Black-footed ferret

Black-footed ferret, photo by J. Michael Lockhart, USFWS.

The U.S. Fish and Wildlife Service has developed a plan to use (UAS) to deliver prairie dog sylvatic plague vaccination.

The primary purpose in this proposal is to develop the equipment, protocols and experience in use of UAS (drones) to deliver oral sylvatic plague vaccine (SPV). It is anticipated that this approach, when fully developed, will offer the most efficient, effective, cost-conscious and environmentally friendly method to apply SPV annually over large areas of prairie dog colonies in support of black-footed ferret recovery.

Plague is a primary obstacle to black-footed ferret recovery. After more than 20 years of intensive reintroduction efforts across 27 reintroduction sites ranging from Mexico to Canada, approximately 300 ferrets were known to exist in the wild at the end of 2015. Ferrets are constantly threatened by plague outbreaks that affect both ferrets, and their primary prey and habitat provider, prairie dogs.

To date, SPV has been applied by hand with people walking pre-defined transects and uniformly dropping single SPV baits every 9-10 meters to achieve a deposition rate of 50 SPV doses per acre. Depending on vegetation and terrain, a single person walking can treat 3-6 acres per hour. All terrain vehicles (ATVs) have been considered but have various problems.

The bait treats are M&Ms smeared in vaccine-laden peanut butter.

Preliminary discussions with people experienced with UAS suggest an aerial vehicle travelling at a modest 9 meters per second could drop a single SPV bait once per second that would result in treating one acre every 50 seconds. If the equipment and expertise can be developed as proposed here, a single UAS operator could treat more than 60 acres per hour.

If the equipment can be developed to deposit 3 SPV doses simultaneously every second, as they envision is possible, some 200 acres per hour could be treated by a single operator. The idea is that the drone would fire the treats in 3 different directions to increase the spread of treats.

The areas to be treated are located in South Phillips County, Montana.

Related: Using Drones to Deliver Medical Supplies in Roadless Areas (2014)The sub-$1,000 unpiloted aerial vehicles UAV Project (2007)Autonomous Flying Vehicles (2006)Cat Allergy Vaccine Created (2011)AlienFly RC Mosquito Helicopter (2007)

Dinosaur Bird Wing and Feather in Amber

Rare Dinosaur-Era Bird Wings Found Trapped in Amber

Two tiny wings entombed in amber reveal that plumage (the layering, patterning, coloring, and arrangement of feathers) seen in birds today already existed in at least some of their predecessors nearly a hundred million years ago.

Skin, muscle, claws, and feather shafts are visible, along with the remains of rows of feathers similar in arrangement and microstructure to modern birds.

photo of dinosaur wing in amber with feathers visible

The nearly 100 million year old wing shows a structure that is very similar to modern birds.

The piece in this photo, and others samples, were bought at an amber market in Myitkyina, the capital of Kachin state in northern Myanmar. The region is politically unstable and most of the amber is sold to Chinese consumers for jewelry and decorative carvings.

Read the related posts for more on the wonderful discoveries saved in amber of hundreds of millions of years. We get to read about these amazing discoveries so often it is easy to lose appreciation for how amazing each one is. This photo shows a wind that was used by a dinosaur almost 100 million years ago.

Related: Marine Plankton From 100 Million Years Ago Found in Amber 2008)Learning About Life over 200 Million Years Ago From Samples Trapped In Amber (2012)The evolution of birds from small predatory dinosaursDino-Era Feathers Found Encased in Amber (2008)Amber Pieces Containing Remains from Dinosaurs and Birds Show Feather Evolution (2011)Ancient Whale Uncovered in Egyptian Desert

An Eukaryote that Completely Lacks Mitochondria

If you don’t have any idea what the title means that is ok. I probably wouldn’t have until the last 15 years when I found how interesting biology is thanks to the internet and wonderful resources online making biology interesting. I hope you find learning about biology as interesting as I do.

Look, Ma! No Mitochondria

Mitochondria have their own DNA, and scientists believe they were once free-living bacteria that got engulfed by primitive, ancient cells that were evolving to become the complex life forms we know and love today.

What they learned is that instead of relying on mitochondria to assemble iron-sulfur clusters, these cells use a different kind of machinery. And it looks like they acquired it from bacteria.

The researchers say this is the first example of any eukaryote that completely lacks mitochondria.

However, the results do not negate the idea that the acquisition of a mitochondrion was an important and perhaps defining event in the evolution of eukaryotic cells, he adds.

That’s because it seems clear that this organism’s ancestors had mitochondria that were then lost after the cells acquired their non-mitochondrial system for making iron-sulfur clusters.

Biology is amazing and mitochondria are one of the many amazing details. I wish so much that my education could have given biology a tiny fraction of the interest I have found it in after school.

Related: Human Gene Origins: 37% Bacterial, 35% Animal, 28% EukaryoticOne Species’ Genome Discovered Inside Another’sParasite Evolved from Cnidarians (Jellyfish etc.)Plants, Unikonts, Excavates and SARs

Healthy Living Greatly Reduces Likelihood of Dying from Cancer

Lifestyle choices can greatly reduce the incidence and death rates from cancer. 4 factors can reduce the incidence of cancer by up to 40% and death rate by 50%: don’t smoke, don’t drink alcohol in excess, maintain a BMI between 18.5 and 27.5, and exercising at a moderate intensity for at least 150 minutes or at a vigorous intensity for at least 75 minutes every week.

Preventable Incidence and Mortality of Carcinoma Associated With Lifestyle Factors Among White Adults in the United States

A substantial cancer burden may be prevented through lifestyle modification. Primary prevention should remain a priority for cancer control.

Cancer is the second leading cause of death in the United States, with 1.6 million new cancer cases and 0.6 million cancer deaths projected to occur in 2016.1 The cancer mortality rate, age-standardized to the 2000 US standard population, decreased from 199 to 163 per 100 000 between 1969 and 2013.2 However, this decline (17.9%) has been modest compared with the dramatic decrease in heart disease mortality (67.5%) during the same period, highlighting the need for further efforts in cancer prevention and treatment.

The study reviewed previous studies and the makeup of the previous studies and available statistics. As they state in the paper: “Because our cohorts’ participants were predominantly whites, to avoid any influence of different racial distributions on the comparison with the general population, we only included whites in the analysis.” They also excluded about 10% of cancers that are believed to have strong environmental factors.

Table Showing a Comparison of Lifestyle Factors in the Low- and High-Risk Groups

In the 2 cohort studies of US white individuals, we found that overall, 20% to 40% of carcinoma cases and about half of carcinoma deaths can be potentially prevented through lifestyle modification. Not surprisingly, these figures increased to 40% to 70% when assessed with regard to the broader US population of whites, which has a much worse lifestyle pattern than our cohorts.

Notably, approximately 80% to 90% of lung cancer deaths could be avoided if Americans adopted the lifestyle of the low-risk group, mainly by quitting smoking. For other cancers, from 10% to 70% of deaths could be prevented. These results provide strong support for the importance of environmental factors in cancer risk and reinforce the enormous potential of primary prevention for cancer control.

Related: A Healthy Lifestyle is More About Health Care than the Sickness Management That We Call Health Care IsBetter Health Through: Exercise, Not Smoking, Low Weight, Healthy Diet and Low Alcohol Intake (2013)Exercise Is Really Really Good for YouPhysical Activity for Adults: Inactivity Leads to 5.3 Million Early Deaths a Year (2012)

Sustainable Ocean Farming

Farming the Sea: why eating kelp is good for you and good for the environment

There are serious problems with our ability to grow healthy food for the number of people we have today (and will have in the future). Innovations have allowed us to feed ourselves. But the damage done to topsoil and other damage including pollution of our rivers is huge. Overfishing and factory farms are keeping us going today but are doing immense damage and are not sustainable.

Seed companies abusing the corrupt government patent systems creates even more damage. We need better solutions. We have many people doing great things but we need to do much more. Ocean farming is one of many areas we should expand. And we should greatly reduce the use of factory farms, antibiotics for livestock, overfishing and the overuse of pesticides.

How an Army of Ocean Farmers are Starting an Economic Revolution

So we all went on a search for sustainability. I ended up in Northern Canada on an aquaculture farm. At that point aquaculture was supposed to be the great solution to overfishing, but when I got there I found more of the same, only using new technologies to pollute local waterways with pesticides and pumping fish full of antibiotics.

I never thought climate change had anything to do with my life. But it does. From my vantage point, climate change is not an environmental issue at all — it’s an economic issue.

As ocean farmers, we reject aquaculture’s obsession with monoculture, an obsession similar to that of modern land farming. Our goal is diversity. It’s a sea-basket approach:We grow two types of seaweeds, four kinds of shellfish, and we harvest salt. But with over 10,000 edible plants in the ocean, we’ve barely scratched the surface.

Instead of repeating history we’re building infrastructure from seed-to-harvest-to-market. We’re starting nonprofit hatcheries so that our farmers can access low-cost seed. We’re creating ocean seed banks so that the Monsantos of the world can’t privatize the source of our food and livelihoods.

Related: SelFISHingThe State of the Oceans (2011)Rethinking the Food Production System (2008)

Medicinal Plants

Another great webcast from SciShow. In this webcast Hank Green discusses how we have used plants to treat us and improve our health.

In the webcast, Hank also does a good job touching a bit on the scientific inquiry process (which is something I find interesting and I think is very important for people living in society today to understand).

Related: Youyou Tu, The First Chinese Woman to Win a Nobel PrizeRubber TreesPhotosynthesis: Science Explained

Gut Bacteria Explored as Medical Treatment – even for Cancer

The interaction between gut bacteria and human health continues to be a fertile area of medical research. It appears to be in the very early days of such research. Of course, as I have said before, headline making news often doesn’t result in medical breakthrough, and even when it does a decade isn’t a long wait for it to happen.

How Gut Bacteria Are Shaking Up Cancer Research

In November, University of Chicago researchers wrote that giving mice Bifidobacterium, which normally resides in the gastrointestinal tract, was as effective as an immunotherapy in controlling the growth of skin cancer. Combining the two practically eliminated tumor growth. In the second study, scientists in France found that some bacterial species activated a response to immunotherapy, which didn’t occur without the microbes.

The complex interactions involved in human health is another area that has huge room for research going forward.

Related: Some Bacteria Might Fight Cancer (2008)Cancer Vaccines (2011)Using Diatom Algae to Deliver Chemotherapy Drugs Directly to Cancer Cells (2015)Webcast of a T-cell Killing a Cancerous Cell (2012)

Webcasts on the Human Microbiome

The human microbiome is a very interesting aspect of our health and biology.

The 99% figure they quote is mainly silly. It might be technically accurate, but it is much more misleading than accurate (if it is accurate). We have more non-human cells than human but those cells are much smaller and we are overwhelmingly made up of human cells by weight (95+%).

The complexity of healthy bodies is far from understood. It is interesting to watch our understanding of the balancing act going on inside of us. Many foreign “invaders” are critical to our health.

Related: People are Superorganisms With Microbiomes of Thousands of SpeciesPeople Have More Bacterial Cells than Human CellsFighting Superbugs with Superhero BugsWe Have Thousands of Viruses In Us All the Time

Continue reading

Our Poor Antibiotic Practices Have Sped the Evolution of Resistance to Our Last-Resort Antibiotic

The risk to human health due to anti-biotic resistance continues to be a huge public health concern. Our continued failure to adopt better antibiotics practices increase that risk. Those bad practices include feeding large amounts of antibiotics to farm animals to increase yields and increase the evolution of drug resistant bacteria.

Resistance to last-resort antibiotic has now spread across globe

The genes found in Denmark and China are the same, says Aarestrup, suggesting mcr-1 has travelled, rather than arising independently in each place. It is thought to have emerged originally in farm animals fed colistin as an antibiotic growth promoter.

In 2012, the World Health Organization called colistin critically important for human health, meaning its use in animals should be limited to avoid promoting resistance. Yet in 2013, the European Medicines Agency reported that polymyxins were the fifth most heavily used type of antibiotic in European livestock.

Colistin, an antibiotic that previously was a last defense against resistant strains of bacteria, is even more heavily used in China than Europe (it is not clear how the resistance developed but it likely developed in one place, most likely China, and spread rather than emerging in 2 places). The USA has been more responsible and has not risked human health through the widespread use of colistin in farm animals. But the USA still uses antibiotics irresponsibly to promote livestock growth at the risk of human lives being lost as antibiotics lose their effectiveness as bacteria evolve resistance (which is sped by poor practices in agri-business).

Antibiotic resistance is an enormous risk to human health. Millions of lives could be lost and we have have years to reduce those risks. Scientists are doing a great deal of work to find new tools to help us avoid catastrophe but we have been far too careless in our practices, especially in the massive use of antibiotics merely to boost yields in agribusiness.

Related: Are you ready for a world without antibiotics? (2010)80% of the Antibiotics in the USA are Used in Agriculture and AquacultureWhat Happens If the Overuse of Antibiotics Leads to Them No Longer Working?Waste Treatment Plants Result in Super Bacteria (2009)CDC Again Stresses Urgent Need to Adjust Practices or Pay a Steep Price (2013)

Using Diatom Algae to Deliver Chemotherapy Drugs Directly to Cancer Cells

I am thankful for scientists doing the time consuming and important research to find new ways to fight disease. Here is an interesting webcast discussing how chemotherapy is used to fight cancer and how scientists are looking to algae to deliver the chemotherapy drugs to better target cancer cells (while not savaging our health cells).

I am also thankful to the funding sources that pay for this research (and for cool explanations of science, like SciShow).

Read more about the genetically engineered algae kills 90% of cancer cells without harming healthy ones. The algae are a diatom and many diatoms look very cool.

Sadly the actual research paper (by government funded university professors) is published by a closed science publisher (when are we finally going to stop this practice that was outdated over a decade ago?). Thankfully those responsible for SciShow are much more interested in promoting science than maintaining outdated business models (in direct contrast to so many science journal publishers).

Related post on cool delivery methods for life saving drugs: Using Bacteria to Carry Nanoparticles Into CellsSelf-Assembling Cubes Could Deliver Medicine (2006)Nanoparticles With Scorpion Venom Slow Cancer SpreadNASA Biocapsules Deliver Medical Interventions Based Upon What They Detect in the Body

  • Recent Comments:

    • samaira khatri: Exercise can help prevent excess weight gain or help maintain weight loss. When you engage...
    • Sherry: Love the idea of science toys! STEM toys are just amazing these days but isn’t it better to...
    • Marbella: This was really interesting. Thanks for sharing.
    • MIT: I’ve heard of animals being used to sniff out cancer before, but I’ve never heard of them...
    • Piazza Dei Fiori: Well….making my girlfriend very happy, that is what flowers are for…
    • Simon: non-smoking people exceed and excel in life expectancy and in fitness and quality of life, There is...
    • Conrad: I’m glad I was able to come back and watch the video. It is ever so interesting that someone...
    • Conrad: The success numbers in the original article speaks volumes about what these rats can do in low...
  • Recent Trackbacks:

  • Links