Currently browsing the Energy Category

Posts on energy: Wind Power Provided Over 1% of Global Electricity in 2007 - Google Investing Huge Sums in Renewable Energy and is Hiring - Solar Energy: Economics, Government and Technology - MIT Energy "Manhattan Project" - Engineers Save Energy

Do It Yourself Solar Furnace for Home Heating

Man builds $300 solar furnace, decreases heating bill

“I think it’s something that everyone should have affixed right to [their] house. I think it should be part of your design,” said Buchanan. “It would be very easy to do. [With a] south-facing house like mine, it’s perfect.

“Just mount it on the side. If you touch the side of the house, even at —20 C, it’s still hot. We should be gathering that heat and driving it inside as quickly as possible.”

It is great to see do it yourself solutions that easily tap the energy provided by the sun to heat your house.

I had a friend that had a south facing greenhouse (attached to her house) that had 2 huge water tanks. They would heat up in the sun and give off heat all night (the stone floor would do the same thing).

Related: Brian’s Pop Can Solar HeaterSolar DIY Space Heating ProjectsHow to Build a Soda Can HeaterPay as You Go Solar in IndiaSoda-can furnaces powered by solar energy heat Denver neighborhoodGreen Building with Tire BalesCost Efficient Solar Dish by Students (2008)

Continue reading

Battery Breakthrough Using Organic Storage

Battery offers renewable energy breakthrough

a metal-free flow battery that relies on the electrochemistry of naturally abundant, inexpensive, small organic (carbon-based) molecules called quinones, which are similar to molecules that store energy in plants and animals.

The mismatch between the availability of intermittent wind or sunshine and the variable demand is the biggest obstacle to using renewable sources for a large fraction of our electricity. A cost-effective means of storing large amounts of electrical energy could solve this problem.

Flow batteries store energy in chemical fluids contained in external tanks, as with fuel cells, instead of within the battery container itself. The two main components — the electrochemical conversion hardware through which the fluids are flowed (which sets the peak power capacity) and the chemical storage tanks (which set the energy capacity) — may be independently sized. Thus the amount of energy that can be stored is limited only by the size of the tanks. The design permits larger amounts of energy to be stored at lower cost than with traditional batteries.

This looks like a very interesting field of research. Storing power remains one of the challenges for renewable energy sources such as solar and wind. This is especially true if the use is disconnected from the grid, but is even true for grid-connected uses. Especially as increasing the amount of wind and solar energy make it increasingly likely that surplus energy is created at certain times.

The research seems to allow for sensible size home storage setups. At the commercial level the volume needed is very large. Another concern to be addressed is how many cycles the “battery” is good for before it degrades; current experimentation show no degradation after 100 cycles but consumer/commercial usage will need thousands of cycles.

Related: Battery Breakthrough (solid sodium metal mated to a sulphur compound by an extraordinary, paper-thin ceramic membrane)Energy Storage Using Carbon Nanotubes (2006)Chart of Wind Power Generation Capacity Globally 2005-2012Recharge Batteries in Seconds

Chart of Wind Power Generation Capacity Globally 2005-2012

Chart of installed wind energy capacity by country from 2005 to 2012

Chart of installed wind energy capacity by country from 2005 to 2012 by Curious Cat Science and Engineering Blog using data from the Wind Energy Association. 2012 data is for the capacity on June 30, 2012. Chart may be used with attribution as specified.

Wind power generation capacity continues to grow faster than the increase in electricity use. The rate of growth has slowed a bit overall, though China’s growth continues to be large.

From 2005-2012 globally wind power generation capacity increased 330%; lead by China with an increase of 5,250%. Of the leading countries Germany grew the least – just 63%. The percent of global capacity of the 8 countries listed in the chart (the 8 countries with the highest capacity in 2012) has been amazingly consistent given the huge growth: from a low of 79% in 2006 to a high of 82.4% in 2011 (2012 was 82%).

Global growth in wind energy capacity was 66% in 2008-2010. In 2010 to 2012 the increase was 28%. The second period is just 18 months (since the 2012 data is for the first half of the year). Extending the current (2010-2012) rate to the end of 2012 would yield an increase of 37%, which still shows there has been a slowdown compared to the 66% rate in the previous 2 year period. The decrease in government subsidies and incentives is responsible for the slowing of added capacity, though obviously the growth is still strong.

From 2005 to 2012 China’s share of global wind energy capacity increased from 2% to 27%, the USA 15% to 20%, Germany fell from 31% to 12%, India fell from 7.5% to 6.8% (while growing capacity 292%).

Hydro power is by far the largest source of green electricity generation (approximately 5 times the capacity of wind power – but hydro capacity is growing very slowly). And installed solar electricity generation capacity is about 1/5 of wind power capacity.

Related: Global Wind Energy Capacity Exceeds 2.5% of Global Electricity Needs (2010)Wind Power Capacity Up 170% Worldwide from 2005-2009Wind Power Provided Over 1% of Global Electricity in 2007

Great Webcast Explaining the Digestive Systems

You will learn things like why it is so important to chew your food well (increase the surface area for enzymes to get at the food). Our bodies also have adapted to provide a huge surface area for the digestive system to work; the small intestine alone has a surface area of 250 square meters (larger than the size of most apartments). Your small intestine is 4.5 to 10.5 meters long.

Related: Staphylococcal Food PoisoningEnergy Efficiency of DigestionTracking the Ecosystem Within UsWaste from Gut Bacteria Helps Host Control Weight

Pay as You Go Solar in India

Farmers Foil Utilities Using Cell Phones to Access Solar

In October, Bangalore-based Simpa Networks Inc. installed a solar panel on Anand’s whitewashed adobe house along with a small metal box in his living room to monitor electricity usage. The 25-year-old rice farmer, who goes by one name, purchases energy credits to unlock the system via his mobile phone on a pay-as-you-go model.

When his balance runs low, Anand pays 50 rupees ($1) — money he would have otherwise spent on kerosene. Then he receives a text message with a code to punch into the box, giving him about another week of electric light.
When he pays off the full cost of the system in about three years, it will be unlocked and he will get free power.

Across India and Africa, startups and mobile phone companies are developing so-called microgrids, in which stand- alone generators power clusters of homes and businesses in places where electric utilities have never operated.

Very cool. Worldwide, approximately 1.6 billion people have no access to electricity and another 1 billion have extremely unreliable access. The poorest spending up to 30% of their income on inefficient and expensive means of providing light and accessing electricity. Solutions like this, finding engineering solutions for basic needs that are market based, are great.

That the poor end up owning their solar system after just 3 years is great.

Creating great benefit to society with the smart adoption of technology and sustainable economics is something I love.

Related: Solar Power Market Solutions For Hundreds of Millions Without ElectricityAppropriate Technology: Solar Hot Water in Poor Cairo NeighborhoodsEngineering a Better World: Bike Corn-ShellerWater Pump Merry-go-Round

Google Lets Servers Stay Hot, Saving Air Conditioning Costs

The electricity to run huge server farms is enormous. One of the significant cost is air conditioning to cool down the server rooms.

Too Hot for Humans, But Google Servers Keep Humming

Google’s data center in Belgium, which was the company’s first facility to rely entirely upon fresh air for cooling, instead of energy-hungry chillers.

For the vast majority of the year, the climate in Belgium is cool enough that this design works with no problems. When it gets hot in Belgium, the temperature inside Google’s data center warms beyond the facility’s desired operating range

During these periods, the temperature inside the data center can rise above 95 degrees.

“We’ve had very few excursion hours, and they don’t last long, so we let the site run right through them. We ask our employees to go in and do office work. It’s too warm for people, but the machines do just fine.”

Google’s experience is the latest affirmation that servers are much tougher than we think. Many data centers feel like meat lockers, as servers are maintained in cool environments to offset the heat thrown off by components inside the chassis. Typical temperature ranges in data centers often range from 68 and 72 degrees.

In recent years, rising power bills have prompted data center managers to try and reduce the amount of power used in cooling systems.

The temperatures in Fahrenheit obviously. I was surprised that the servers don’t seem to need to be chilled to perform well.

Related: Saving Energy with Smart SoftwareNew Server Uses 75% Less Power and Space

Thorium Nuclear Reactors

Kirk Sorensen is founder of Flibe Energy and is an advocate for nuclear energy based on thorium and liquid-fluoride fuels and author of Energy From Thorium blog.

He also taught nuclear engineering at Tennessee Technological University as a guest lecturer. He is active in nonprofit advocacy organizations such as the Thorium Energy Alliance and the International Thorium Energy Organization. He is married and has four small children.

See another video with him on why the thorium molten-salt reactor wasn’t developed (from a Google tech talk).

Related: Molten Salt Solar Reactor Approved by CaliforniaHelium-3 Fusion ReactorNuclear Power Production by Country from 1985-2009Mining the Moon

Footballs Providing Light to Those Without Electricity at Home

This is an update on our previous post: sOccket: Power Through Play. This year, Soccket, 3,000 balls are scheduled to be put into use around the world. The college students (all women, by the way) that came up with this idea (harnessing the kenetic energy created while kicking a football [soccer ball] around to power a batter to use for lighting) are continuing to test and develop the product.

That ball has to be able to survive dusty, wet and harsh conditions and continue to provide power. The new, production version of the football powers a water sterilizer, fan, and provides up to 24 hours of LED light. It also can’t be deflated (a side affect of a design that is able to survive the rough environments, I believe).

I love to see engineers focusing on providing solutions for the billions of people that need simple solutions. Creating the next iPhone innovations is also cool, but the impact of meeting the needs of those largely ignored today, is often even greater.

The sOccket inventors also have a talent for publicity, which is always useful for entrepreneurs.

Related: Water Pump Merry-go-RoundWater and Electricity for AllHigh School Team Developing Clean Water SolutionsSmokeless Stove Uses 80% Less Fuel

5% of the Universe is Normal Matter, What About the Other 95%?

Dark Matters from PHD Comics on Vimeo.

Great discussion and illustration of the state of our understanding of physics, matter, dark matter and the rest of the stuff our universe has from PhD comics. What is the universe made of? 5% of it is normal matter (the stardust we are made of), 20% dark matter and the other 75% – we have no idea!

Dark Cosmos is a nice book on some of these ideas. It is 5 years old so missing some of the latest discoveries.

Related: Why do we Need Dark Energy to Explain the Observable Universe?The Mystery of Empty SpaceFriday Fun, CERN Version
Continue reading

Google Invests $168 million in Largest Solar Tower Power Project

Google is investing in a new solar tower power project located in California that will generate 392 gross MW of clean, solar energy. That’s the equivalent of taking more than 90,000 cars off the road. Google has now invested $250 million in clean energy.

Investing in the world’s largest solar power tower plant

works by using a field of mirrors, called heliostats, to concentrate the sun’s rays onto a solar receiver on top of a tower. The solar receiver generates steam, which then spins a traditional turbine and generator to make electricity. Power towers are very efficient because all those mirrors focus a tremendous amount of solar energy onto a small area to produce steam at high pressure and temperature (up to 1000 degrees F).

Several large solar projects are in the works in the sunny Southwest (and around the globe), but Ivanpah will be the first solar power tower system of this scale. The Ivanpah Power Tower will be approximately 450 feet tall and will use 173,000 heliostats, each with two mirrors.

The Department of energy is also providing financing for this project. The project is 10 times larger than the largest solar photovoltaic project in California.

Related: Google Investing Huge Sums in Renewable Energy and is HiringGoogle.org Invests $10 million in Geothermal EnergyGoogle’s Energy InterestsMolten Salt Solar Reactor Approved by CaliforniaSolar Tower Power GenerationFinding Huge Sources of Energy Without Increasing Carbon Dioxide Output

Wave Disk Engine Could Increase Efficiency 5 Times

Norbert Müller’s group has received $2.5 million from the U.S. Department of Energy Advanced Research Projects Agency-Energy (ARPA-E) in 2010 to build and develop the wave disk engine, which uses turbo combustion “shock wave” technology to convert either liquid fuel or compressed natural gas or hydrogen into electrical power. With this engine, fuel efficiency for hybrid vehicles could increase 5 times compared to internal combustion engine vehicles on the road today (and 3.5 times less than current hybrid cars), while reducing costs by 30%. The goal of Müller’s team is to produce an engine that would give hybrid vehicles a 500-mile driving range and reduce carbon dioxide emissions by as much as 90%.

In the video he says they hope to have the engines in production vehicles within 3 years. My guess is he is being quite optimistic, but we will see. The new engine would allow 1,000 pounds to be removed from the weight of cars (by removing the need for drive train, radiator…).

Related: $10 Million X Prize for 100 MPG CarEconomic Benefits Brought by Investing in Engineering59 MPG Toyota iQ Diesel Available in Europe (2008)MIT Hosts Student Vehicle Design Summit (2006)

  • Recent Comments:

    • Lisa Smith: If making hyper loop is cost effective someone should have built it by now. I don’t think...
    • Kurt Barker: This was a great article. It is always great to read how modern technology can benefit the...
    • Coleman: Impressive! Great to see people taking initiative to differentiate their energy use – long...
    • Kevin Burke: Wow, some of the greatest ideas are also the simplest. I hope Mr Buchanan’s ideas are...
    • Phil Luther: Thanks for the information. I have personally been looking at different types of solar heating...
    • Jody Weissler: As the founder of a program that encourage the use of rel=”nofollow 221;>Japanese...
    • Auburn: I agree this water heater is super efficient but I think the nations coal plants are safe. Most...
    • Arie: I totally agree. I try to run 3 times a week, and it makes me feel much much better.
  • Recent Trackbacks:

  • Links