Posts about Life Science

We are Not Us Without The Microbes Within Us

I Contain Multitudes is a wonderful book by Ed Young on the microbes within us.

Time and again, bacteria and other microbes have allowed animals to transcend their basic animalness and wheedle their way into ecological nooks and crannies that would be otherwise inaccessible; to settle into lifestyles that would be otherwise intolerable; to eat what they could not otherwise stomach; to succeed against their fundamental nature. And the most extreme examples of this mutual assured success can be found in the deep oceans, where some microbes supplement their hosts to such a degree that the animals can eat the most impoverished diets of all – nothing.

This is another book exploring the wonders of biology and the complexity of the interaction between animals and microbes.

For hundreds of years, doctors have used dioxin to treat people whose hearts are failing. The drug – a modified version of a chemical from foxglove plants – makes the heart beat more strongly, slowly, and regularly. Or, at least, that’s what it usually does. In one patient out of every ten, digoxin doesnt’ work. Its downfall is a gut bacterium called Eggerthella lenta, which converts the drug to an inactive and medically useless form. Only some strains of E. lenta do this.

The complex interactions within us are constantly at work helping us and occasionally causing problems. This obviously creates enormous challenges in health care and research on human health. See related posts: Introduction to Fractional Factorial Designed Experiments, “Grapefruit Juice Bugs” – A New Term for a Surprisingly Common Type of Surprising Bugs and 200,000 People Die Every Year in Europe from Adverse Drug Effects – How Can We Improve?.

Every person aerosolized around 37 million bacteria per hour. This means that our microbiome isn’t confined to our bodies. It perpetually reaches out into our environment.

Avoiding bacteria is not feasible. Our bodies have evolved with this constant interaction with bacteria for millions of years. When we are healthy bacteria have footholds that make it difficult for other bacteria to gain a foothold (as does our immune system fighting off those bacteria it doesn’t recognize or that it recognized as something to fight).

A few pages later he discusses the problem of hospital rooms that were constantly cleaned to kill bacteria and largely sealed to reduce airflow. What happened is those bacteria the sick people had in them were the bacteria that were flourishing (the number of other bacteria to compete for space was small). Opening the windows to welcome the outside air resulted in better results.

Outdoors, the air was full of harmless microbes from plants and soils. Indoors, it contained a disproportionate number of potential pathogens, which are normally rare or absent in the outside world

Human health is a fascinating topic. It is true antibiotics have provided us great tools in the service of human health. But we have resorted to that “hammer” far too often. And the consequences of doing so is not understood. We need those scientists exploring the complex interactions we contain to continue there great work.

Related: People are Superorganisms With Microbiomes of Thousands of Species (2013)Bacteria are Always Living in Our Bodies (2014)Gut Bacteria Explored as Medical Treatment – even for Cancer

Engineering Mosquitos to Prevent the Transmission of Diseases

Mosquitos are responsible for huge amount of suffering and death. In 2015 200,000,000 people were infected with malaria and 500,000 died.

It is amazing what knowledge science has provided about the causes of human disease. It is great to have videos like this available that let us learn a bit about it from a short and understandable video.

Using our scientific knowledge to design and implement solutions offers great possibilities. But we also have to worry about the risks of such attempts. Making decisions about what risks to take requires well informed people that are able to understand the opportunities and risks and make intelligent decisions.

Related: Video showing malaria breaking into cellScientists Building a Safer Mosquito (2006)Engineering Mosquitoes to be Flying Vaccinators (2010)

Chimpanzees Solving Numerical Memory Test Better Than People

I can’t even see all the numbers before they disappear. But chimpanzees are shown seeing a flash of 9 numbers on a screen and then pointing to where they were on the screen in order from 1 to 9. Human test subjects can’t even do 5 numbers most of the time.

Related: Chimpanzees Use Spears to Hunt Bush BabiesOrangutan Attempts to Hunt Fish with SpearCrows can Perform as Well as 7 to 10-year-olds on cause-and-effect Water Displacement TasksTropical Lizards Can Solve Novel Problems and Remember the Solutions

Continue reading

The Challenge of Protecting Us from Evolving Bacterial Threats

I have long been concerned about the practices we continue to use increasing the risks of “superbugs.” I have written about this many times, including: The Overuse of Antibiotics Carries Large Long Term Risks (2005)Are you ready for a world without antibiotics? (2010), Antibiotics Breed Superbugs Faster Than Expected (2010), Entirely New Antibiotic (platensimycin) Developed (2006), Our Poor Antibiotic Practices Have Sped the Evolution of Resistance to Our Last-Resort Antibiotic (2015).

I do also believe the wonderful breakthroughs we make when we invest in science and engineering have made our lives much better and have the potential to continue to do so in many ways, including in dealing with the risks of superbugs. But this is something that requires great effort by many smart people and a great deal of money. It will only happen if we put in the effort.

Winning war against ‘superbugs’

hey won this particular battle, or at least gained some critical intelligence, not by designing a new antibiotic, but by interfering with the metabolism of the bacterial “bugs” — E. coli in this case — and rendering them weaker in the face of existing antibiotics

ROS, or “reactive oxygen species,” include molecules like superoxide and hydrogen peroxide that are natural byproducts of normal metabolic activity. Bacteria usually cope just fine with them, but too many can cause serious damage or even kill the cell. In fact, Collins’ team revealed a few years ago the true antibiotic modus operandi: they kill bacteria in part by ramping up ROS production.

We need to continue to pursue many paths to protecting us from rapidly evolving bacterial risks. Many promising research results will fail to produce usable solutions. We need to try many promising ideas to find useful tools and strategies to protect human health.

Using Rats to Sniff Out TB

Apopo’s African giant pouched rats are being used to sniff out mines and TB

In the face of what the World Health Organisation is calling a global TB epidemic, an innovative tech startup named Apopo is attempting to reverse the harrowing statistics, using rodents to sniff out TB in cough and spit samples.

No ordinary lab rats, Apopo’s African giant pouched rats – affectionately named HeroRats – are extremely sensitive to smell, with more genetic material allocated to olfaction than any other mammal species. They are also highly social animals, and can be trained to communicate with humans.

I have written about these wonderful rats previously, Appropriate Technology: Rats Helping Humans by Sniffing Out Land Mines. As I have stated many time I especially enjoy engineering solutions that use affordable and effective methods to help everyone.

Photo of Hero-rat detecting TB in Mozambique with Apopo staff person

Hero-rat detecting TB in Mozambique

A DNA-screening device that takes up to two hours to analyse each individual sample with 95pc accuracy costs $17,000 and thousands more in upkeep. By contrast, a HeroRat costs $6,500 to train, can probe through hundreds of samples every hour [70-85% accuracy rate], and requires only food, water and cages for shelter.

Keep these innovations coming. The USA needs them also given the massively costly healthcare system in the USA.

The TB sniffing rat program was developed through Apopo in Tanzania.

Related: Rats Show Empathy-driven BehaviorBeehive Fence Protects Farms from ElephantsTuberculosis Risk (2007)Dangerous Drug-Resistant Strains of TB are a Growing Threat (2012)

An Eukaryote that Completely Lacks Mitochondria

If you don’t have any idea what the title means that is ok. I probably wouldn’t have until the last 15 years when I found how interesting biology is thanks to the internet and wonderful resources online making biology interesting. I hope you find learning about biology as interesting as I do.

Look, Ma! No Mitochondria

Mitochondria have their own DNA, and scientists believe they were once free-living bacteria that got engulfed by primitive, ancient cells that were evolving to become the complex life forms we know and love today.

What they learned is that instead of relying on mitochondria to assemble iron-sulfur clusters, these cells use a different kind of machinery. And it looks like they acquired it from bacteria.

The researchers say this is the first example of any eukaryote that completely lacks mitochondria.

However, the results do not negate the idea that the acquisition of a mitochondrion was an important and perhaps defining event in the evolution of eukaryotic cells, he adds.

That’s because it seems clear that this organism’s ancestors had mitochondria that were then lost after the cells acquired their non-mitochondrial system for making iron-sulfur clusters.

Biology is amazing and mitochondria are one of the many amazing details. I wish so much that my education could have given biology a tiny fraction of the interest I have found it in after school.

Related: Human Gene Origins: 37% Bacterial, 35% Animal, 28% EukaryoticOne Species’ Genome Discovered Inside Another’sParasite Evolved from Cnidarians (Jellyfish etc.)Plants, Unikonts, Excavates and SARs

Webcasts on the Human Microbiome

The human microbiome is a very interesting aspect of our health and biology.

The 99% figure they quote is mainly silly. It might be technically accurate, but it is much more misleading than accurate (if it is accurate). We have more non-human cells than human but those cells are much smaller and we are overwhelmingly made up of human cells by weight (95+%).

The complexity of healthy bodies is far from understood. It is interesting to watch our understanding of the balancing act going on inside of us. Many foreign “invaders” are critical to our health.

Related: People are Superorganisms With Microbiomes of Thousands of SpeciesPeople Have More Bacterial Cells than Human CellsFighting Superbugs with Superhero BugsWe Have Thousands of Viruses In Us All the Time

Continue reading

Using Diatom Algae to Deliver Chemotherapy Drugs Directly to Cancer Cells

I am thankful for scientists doing the time consuming and important research to find new ways to fight disease. Here is an interesting webcast discussing how chemotherapy is used to fight cancer and how scientists are looking to algae to deliver the chemotherapy drugs to better target cancer cells (while not savaging our health cells).

I am also thankful to the funding sources that pay for this research (and for cool explanations of science, like SciShow).

Read more about the genetically engineered algae kills 90% of cancer cells without harming healthy ones. The algae are a diatom and many diatoms look very cool.

Sadly the actual research paper (by government funded university professors) is published by a closed science publisher (when are we finally going to stop this practice that was outdated over a decade ago?). Thankfully those responsible for SciShow are much more interested in promoting science than maintaining outdated business models (in direct contrast to so many science journal publishers).

Related post on cool delivery methods for life saving drugs: Using Bacteria to Carry Nanoparticles Into CellsSelf-Assembling Cubes Could Deliver Medicine (2006)Nanoparticles With Scorpion Venom Slow Cancer SpreadNASA Biocapsules Deliver Medical Interventions Based Upon What They Detect in the Body

Parasite Evolved from Cnidarians (Jellyfish etc.)

This is another instance of science research providing us interesting details about the very odd ways life has evolved on earth.

Genome sequencing confirms that myxozoans, a diverse group of microscopic parasites that infect invertebrate and vertebrate hosts, are actually highly reduced cnidarians — the phylum that includes jellyfish, corals and sea anemones.

“This is a remarkable case of extreme degeneration of an animal body plan,” said Paulyn Cartwright, associate professor of ecology and evolutionary biology at the University of Kansas (KU) and principal investigator on the research project. “First, we confirmed they’re cnidarians. Now we need to investigate how they got to be that way.”

images of myxozoans parasite spores and a jellyfish

Not only has the parasitic micro jellyfish evolved a stripped-down body plan of just a few cells, but via data generated at the KU Medical Center’s Genome Sequencing Facility researchers also found the myxozoan genome was drastically simplified.

“These were 20 to 40 times smaller than average jellyfish genomes,” Cartwright said. “It’s one of the smallest animal genomes ever reported. It only has about 20 million base pairs, whereas the average Cnidarian has over 300 million. These are tiny little genomes by comparison.”

Despite its radical phasedown of the modern jellyfish’s body structure and genome over millions of years, Myxozoa has retained the essential characteristic of the jellyfish — its stinger, or “nematocyst” — along with the genes needed to make it.

“Because they’re so weird, it’s difficult to imagine they were jellyfish,” she said. “They don’t have a mouth or a gut. They have just a few cells. But then they have this complex structure that looks just like stinging cell of cnidarian. Jellyfish tentacles are loaded with them — little firing weapons.”

The findings are the stuff of scientific fascination but also could have a commercial effect. Myxozoa commonly plague commercial fish stock such as trout and salmon.

“They’re a very diverse group of parasites, and some have been well-studied because they infect fish and can wreak havoc in aquaculture of economic importance,” Cartwright said.

Continue reading

Fighting Superbugs with Superhero Bugs

As concerns over deadly antibiotic-resistant strains of ‘superbug’ bacteria grow, scientists at the Salk Institute are offering a possible solution to the problem: ‘superhero’ bacteria that live in the gut and move to other parts of the body to alleviate life-threatening side effects caused by infections.

Salk researchers reported finding a strain of microbiome Escherichia coli bacteria in mice capable of improving the animals’ tolerance to infections of the lungs and intestines by preventing wasting–a common and potentially deadly loss of muscle tissue that occurs in serious infections. If a similarly protective strain is found in humans, it could offer a new avenue for countering muscle wasting, which afflicts patients suffering from sepsis and hospital-acquired infections, many of which are now antibiotic resistant.

images of E. coli bacteria, salmonella typhimurium and burkholderia thailandensis

Salk scientists found a strain of E. coli bacteria (left) that were able to stop muscle wasting in mice infected with either Salmonella Typhimurium (center) and Burkholderia thailandensis (right). Image courtesy the Salk Institute.

“Treatments for infection have long focused on eradicating the offending microbe, but what actually kills people aren’t the bacteria themselves–it’s the collateral damage it does to the body,” says Janelle Ayres, a Salk assistant professor in the Nomis Foundation Laboratories for Immunobiology and Microbial Pathogenesis and senior researcher on the study.

“Our findings suggest that preventing the damage–in this case muscle wasting–can stave off the most life-threatening aspects of an infection,” she adds. “And by not trying the kill the pathogen, you’re not encouraging the evolution of the deadly antibiotic-resistant strains that are killing people around the world. We might be able to fight superbugs with ‘superhero’ bugs.”

Once the most powerful and revolutionary of drugs, antibiotics appear to have reached their limits, due to the ability of bacteria to rapidly evolve resistance to the medicines. The rise of antibiotic resistance presents a grave threat to people around the world, as diseases once easily controlled repel all attempts at treatment. A recent study found that up to half of the bacteria that cause infections in US hospitals after a surgery are resistant to standard antibiotics.

In the United States alone, two million people annually become infected with bacteria that are resistant to antibiotics and at least 23,000 people die each year as a direct result of these infections, according to the U.S. Centers for Disease Control.

Continue reading

Youyou Tu: The First Chinese Woman to Win a Nobel Prize

The Nobel Prize in Physiology or Medicine 2015 was divided, one half jointly to William C. Campbell (born Ireland, now USA) and Satoshi Ōmura (Japan) “for their discoveries concerning a novel therapy against infections caused by roundworm parasites” and the other half to Youyou Tu (China) “for her discoveries concerning a novel therapy against Malaria”.

Youyou Tu is the first Chinese woman to win a Nobel Prize.

Diseases caused by parasites have plagued humankind for millennia and constitute a major global health problem. In particular, parasitic diseases affect the world’s poorest populations and represent a huge barrier to improving human health and wellbeing. This year’s Nobel Laureates have developed therapies that have revolutionized the treatment of some of the most devastating parasitic diseases.

William C. Campbell and Satoshi Ōmura discovered a new drug, Avermectin, the derivatives of which have radically lowered the incidence of River Blindness and Lymphatic Filariasis, as well as showing efficacy against an expanding number of other parasitic diseases. Youyou Tu discovered Artemisinin, a drug that has significantly reduced the mortality rates for patients suffering from Malaria.

These two discoveries have provided humankind with powerful new means to combat these debilitating diseases that affect hundreds of millions of people annually. The consequences in terms of improved human health and reduced suffering are immeasurable.

image of Artemisinin

via Noble Prize website

Malaria was traditionally treated by chloroquine or quinine, but with declining success. By the late 1960s, efforts to eradicate Malaria had failed and the disease was on the rise. At that time, Youyou Tu in China turned to traditional herbal medicine to tackle the challenge of developing novel Malaria therapies. From a large-scale screen of herbal remedies in Malaria-infected animals, an extract from the plant Artemisia annua emerged as an interesting candidate.

However, the results were inconsistent, so Tu revisited the ancient literature and discovered clues that guided her in her quest to successfully extract the active component from Artemisia annua. Tu was the first to show that this component, later called Artemisinin, was highly effective against the Malaria parasite, both in infected animals and in humans. Artemisinin represents a new class of antimalarial agents that rapidly kill the Malaria parasites at an early stage of their development, which explains its unprecedented potency in the treatment of severe Malaria.

Youyou Tu was born in 1930 in China and is a Chinese citizen. She graduated from the Pharmacy Department at Beijing Medical University in 1955. From 1965-1978 she was Assistant Professor at the China Academy of Traditional Chinese Medicine, from 1979-1984 Associate Professor and from 1985 Professor at the same Institute. From 2000, Tu has been Chief Professor at the China Academy of Traditional Chinese Medicine. She doesn’t have a doctorate, very rare for a Nobel Prize winner in the sciences.

Read the full press release

Related: Nobel Prize in Physiology or Medicine 2012 for Reprogramming Cells to be PluripotentNobel Prize in Physiology or Medicine 2008Parasites in the Gut Help Develop a Healthy Immune System2011 Nobel Prize in Physiology or MedicineVideo showing malaria breaking into cell

  • Recent Comments:

    • Vignesh P: very useful information.thank you for sharing It is so good blog !
    • Dustin McEarchern: Love the use of technology to improve lives. Really great story.
    • Albert Duncan: If the US is bad take a look at the EU and their common fisheries policy. Fisherman throws a...
    • Ashley: Woww…. what a beautiful bird. I love the picture.
    • Mart: very interesting article, thanks for sharing.
    • Anonymous: Nuts, full of good fats and fiber, are health food for the heart. A number of studies show that...
    • jetpara: This is really good news. I love technology. Life will change about technology
    • Cihan Uysal: thank you
  • Recent Trackbacks:

  • Links