Apples Increase the Growth of Beneficial Bacteria in Our Guts, Which Improves Our Health

Posted on October 25, 2014  Comments (1)

Science provides some very clear knowledge that is easy for us to apply (the value of vaccines, materials to use in solar panels, support needed to build a bridge, dangers of consuming small amounts of lead…). But much of our knowledge about nutrition and human health is a bit unclear. This is one of the struggles we face is using our judgement to decide how to eat and live based on what we know and what seems to be so.

Eating more fruit and vegetables than most in the USA eat is pretty clearly beneficial to our health. but exactly how much, how beneficial, how it is beneficial are questions with only varying degrees of good answers so far. Apple’s Scientists at Washington State University have concluded that nondigestible compounds in apples – specifically, Granny Smith apples – may help prevent disorders associated with obesity.

“We know that, in general, apples are a good source of these nondigestible compounds but there are differences in varieties,” said food scientist Giuliana Noratto, the study’s lead researcher. “Results from this study will help consumers to discriminate between apple varieties that can aid in the fight against obesity.”

The tart green Granny Smith apples benefit the growth of friendly bacteria in the colon due to their high content of non-digestible compounds, including dietary fiber and polyphenols, and low content of available carbohydrates. The non-digestible compounds are fermented by bacteria in the colon, which benefits the growth of friendly bacteria in the gut.

The study showed that Granny Smith apples surpass Braeburn, Fuji, Gala, Golden Delicious, McIntosh and Red Delicious in the amount of nondigestible compounds they contain.

Read more

Appropriate Technology and Focus on Improving Lives at MIT

Posted on October 18, 2014  Comments (0)

I have written about the D-lab at MIT founded by Amy Smith. This is just a reminder of all the good stuff they are doing. The D-Lab is building a global network of innovators to design and disseminate technologies that meaningfully improve the lives of people living in poverty. The program’s mission is pursued through interdisciplinary courses, technology development, and community initiatives, all of which emphasize experiential learning, real-world projects, community-led development, and scalability.

Another of their initiatives, the International Development Innovators Network seeks to create low-cost, high-impact technologies and ventures, while simultaneously documenting and evaluating approaches to international development that value local ingenuity and innovation. This effort includes design summits, innovation centers, business incubators, and a growing network of over 400 innovators in 50 countries.

D-Lab’s Youth Outreach Program focuses on Hands-on Invention Education and works with primary and secondary school teachers to develop curricular materials that build the confidence and skills needed by the next generation of innovators from around the world. Together with students and educators from around the world, D-Lab is developing and delivering hands-on curricula aimed at youth that utilize affordable locally available resources.

The program continues to help develop and deploy great products that are meeting the needs to people around the world.

The Leveraged Freedom Chair, is an all-terrain wheelchair designed for the harsh terrain faced by people with disabilities in developing countries.

Read more

Ocean Exploration – Live Feed and Highlights

Posted on October 11, 2014  Comments (0)

Nautilus Live provides a live view of the E/V Nautilus as it explores the ocean studying biology, geology, archeology, and more. The site also includes highlights such as this video of a siphonophore.

Siphonophores are actually made up of numerous animals even though they look like one animal. These amazing colonial organisms are made up up many smaller animals called zooids, and can be found floating around the pelagic zone in ocean basins. The Portugese Man O’ War is a famous siphonophore.

Each zooid is an individual, but their integration with each other is so strong, the colony attains the character of one large organism. Indeed, most of the zooids are so specialized, they lack the ability to survive on their own.

Related: Giant Star Fish and More in AntarcticaHydromedusae, Siphonophora, Cnidarians, Ctenophores (what are jellyfish?)Macropinna Microstoma: Fish with a Transparent HeadLarge Crabs Invading Antarctic as Waters Warm

Here is another video from Nautilus, showing a large dumbo octopus:

Read more

STEM Graduates in the USA: 465,000 Women and 451,000 Men

Posted on October 4, 2014  Comments (0)

STEM baccalaureate degrees in the USA in 2010 (reported by NSF in 2014):

Field Women
  
Men
Science (including math) 442,000 343,000
Engineering 23,000 108,000
Health 193,000 36,000
Total 658,000 586,000



If you exclude health, women still lead 465,000 to 451,000.

The same data for master’s degrees:

Field Women
  
Men
Science (including math) 86,000 72,000
Engineering 14,000 49,000
Health 97,000 22,000
Total 197,000 147,000



Excluding health the totals are: women 100,000, men 125,000.

In 2005, 235,197 women received undergraduate science and engineering degrees, compared to 230,806 for men. In 2005, 53,051 women received masters science and engineering degrees, compared to 66,974 men. All increased a large amount from 2005 to 2010 and degrees awarded to women increased much faster than the increase seen for men.

As I predicted in 2008 (Women Choosing Other Fields Over Engineering and Math) the trends continued and resulted in large imbalances in favor of women at the undergraduate level for science related degrees.

At the masters level women continue to increase degrees (nearly doubling from 2005 to 2010 excluding health). The relative gains (compared to men) at the masters level are small in that 5 year period, but it seems to me the news is mainly good. I expect women will show relative gains at the masters and PhD levels going forward, though those gains may well be slower than they were at the undergraduate level.

STEM fields continue to show large gender imbalances (with women and men dominating certain fields and being relatively rare in others). Continuing to provide opportunities for talented and interested students to explore their field of choice is important for the students well being and for the well being of society. We want to take advantage of the great minds we have and not have people excluded from pursuing their dreams.

Related: Alternative Career Paths Attract Many Women in Science FieldsThe USA is Losing Scientists and Engineers Educated in the USA

Lots of Bacteria are Always Living in Our Bodies

Posted on September 27, 2014  Comments (0)

My response to a question on Reddit – Ask Science:

Let’s say you get infected with a bacterium that causes annoying, but totally non-dangerous symptoms. If you just try to “live with it,” will your immune system eventually kill it, or does killing bacteria require antibiotics in all cases?

Your body definitely kills lots of bacteria.

Your body also has tons of bacteria all the time (many doing much more good than they do harm). These bacteria also compete with each other.

So your “existing” bacteria kill off others all the time too (you have lots of different types of bacteria full time in your body – they often settle into niches and fight off any others , which is normally good as they are long term residents your body has learned to live with them).

Also like everything bacteria die off themselves – though if the conditions are right they are multiplying like crazy so that exceeds die off.

An astonishing number and variety of microbes, including as many as 400 species of bacteria, help humans digest food, mitigate disease, regulate fat storage, and even promote the formation of blood vessels.

According to estimates, phages destroy up to 40 percent of the bacteria in Earth’s oceans each day.

Staphylococcal food poisoning – an example of bacteria infection my body dealt with quickly.

People talk about genetics impact on getting cavities and impact of brushing and flossing well. Also the makeup of bacteria can help or hurt. If your mouth is home to certain bacteria tooth decay is less likely, home to others it is more likely. They tend to remain fairly steady (a certain makeup of bacteria will be consist for a person over the long term – not perfectly that way but tend that way). A UCLA microbiologist developed a mouthwash to try and ceed your mouth with good bacteria and oust the bad guys.

Related: People Have More Bacterial Cells than Human CellsHuman Gene Origins: 37% Bacterial, 35% Animal, 28% Eukaryotic

Epigenetics, Scientific Inquiry and Uncertainty

Posted on September 20, 2014  Comments (0)

Science is full of fascinating ideas. Epigenetics is one area I find particularly interesting. This previous post has a few links to learning more: DNA Passed to Descendants Changed by Your Life.

Angela Saini is one 109 people I follow on Twitter. I don’t see the point in “following” people on Twitter that you have no interest in, I only follow the small number of people that post Tweets I want to read.

In, Epigenetics: genes, environment and the generation game, Angela Saini looks at the confused state of current scientific understand now. It is very difficult to tell if, and if so, to what extent, epigenetic inheritance happens in people.

Professor Azim Surani, a leading developmental biologist and geneticist at the University of Cambridge, adds that while there is good evidence that epigenetic inheritance happens in plants and worms, mammals have very different biology. Surani’s lab carried out thorough studies on how epigenetic information was erased in developing mouse embryos and found that “surprisingly little gets through” the reprogramming process.

Professor Timothy Bestor, a geneticist at Columbia University in New York, is far more damning, claiming that the entire field has been grossly overhyped. “It’s an extremely fashionable topic right now. It’s very easy to get studies on transgenerational epigenetic inheritance published,” he says, adding that all this excitement has lowered critical standards.

Related: Epigenetic Effects on DNA from Living Conditions in Childhood Persist Well Into Middle AgeMedical Study Findings too Often Fail to Provide Us Useful KnowledgeScientific Inquiry Process Finds That Komodo Dragons Don’t have a Toxic Bite After All

Read more

Nutrition and Digestion in Horses

Posted on September 18, 2014  Comments (2)

Unlike cattle which have several stomachs (and there own interesting digestion system), horses have only one stomach. Like cattle their natural diet is grass. With feed provided by people, horses can run into issues they don’t experience from their natural diet. Fresh grass is fibrous and slows down digestion. If feed is used the feeding should be spread out several times during the day, due to the horses digestive system.

image of the digestive system of a horse

image via eXtention. The next 4 paragraphs are slightly edited quotes from the link.

The small intestine is the main site of digestion and absorption of protein, energy, vitamins and minerals.

The cecum is located after the small intestine of a horse and it functions much like the rumen of a cow (as a fermentative vat housing microbes which aid digestion). These microbes break down nutrient sources that would otherwise be unavailable to the horse.

The cecum and colon house bacterial, protozoal and fungal populations which function in microbial digestion of feed material in the digestive tract. Many different products of microbial digestion are absorbed by the horse.

Among other benefits, incorporating long-stem forage into rations increases particle size of ingested matter, thus slowing rate of passage. It also increases dry matter intake, thus stimulating water intake.

Nutrients and Common Feed Sources for Horses from the extension service (USA land grant universities)

Carbohydrates provide the majority of a horse’s energy. Non-structural carbohydrates, such as starch and glucose from grains and gums and pectins from fiber, are readily utilized as energy sources for the horse. The enzyme amylase breaks down non-structural carbohydrates into glucose and simple sugars, which are absorbed in the small intestine.

Structural carbohydrates, such as cellulose and hemicellulose in plants, can only be broken down by bacterial enzymes in the cecum and colon. The microorganisms convert these carbohydrates to volatile fatty acids (acetate, propionate, butyrate), which can provide 30 to 70 percent of the horse’s energy requirement.

Fibrous feeds are a very important part of the horse’s diet. They provide nutrients for both the horse and microbes in the hindgut as well as stimulate muscle tone and activity of the gastrointestinal tract.

Mineral supplements are usually required in the horse’s diet. Macrominerals are added to a horse’s diet to balance the ration to meet mineral requirements.

Human raised horses usually have some grazing but get some or much of there food needs from feed. Those feeds often supplement normal food for wild horses with beets, apples, carrots and other sources. In addition the horse food supplements include minerals, fiber and even pre-biotics and pro-biotics (just like our processed food does).

As a general rule, horses need 1 to 2 quarts (2 to 4 liters per kilogram) of water per pound of dry matter consumed. Of course, other factors can increase the water need, such as exercise (since it results in water loss through sweating).

Related: Great Webcast Explaining the Digestive SystemsEnergy Efficiency of DigestionTracking the Ecosystem Within Us

Lactic Acid Bacteria in Bees Counteracted Antibiotic-Resistant MRSA in Lab Experiments

Posted on September 16, 2014  Comments (0)

13 lactic acid bacteria found in the honey stomach of bees have shown promising results as an antibiotic treatment in a series of studies at Lund University in Sweden (Open access paper: Lactic acid bacterial symbionts in honeybees – an unknown key to honey’s antimicrobial and therapeutic activities). The group of bacteria counteracted antibiotic-resistant MRSA in lab experiments. The bacteria, mixed into honey, has healed horses with persistent wounds. The formula has also previously been shown to protect against bee colony collapse.

photo of a bee on a flower

Photo by Justin Hunter

Raw honey has been used against infections for millennia, before honey – as we now know it – was manufactured and sold in stores. So what is the key to its’ antimicrobial properties? Researchers at Lund University in Sweden have identified a unique group of 13 lactic acid bacteria found in fresh honey, from the honey stomach of bees. The bacteria produce a myriad of active antimicrobial compounds.

These lactic acid bacteria have now been tested on severe human wound pathogens such as methicillin-resistant Staphylococcus aureus (MRSA), Pseudomonas aeruginosa and vancomycin-resistant Enterococcus (VRE), among others. When the lactic acid bacteria were applied to the pathogens in the laboratory, it counteracted all of them.

While the effect on human bacteria has only been tested in a lab environment thus far, the lactic acid bacteria has been applied directly to horses with persistent wounds. The LAB was mixed with honey and applied to ten horses; where the owners had tried several other methods to no avail. All of the horses’ wounds were healed by the mixture.

The researchers believe the secret to the strong results lie in the broad spectrum of active substances involved.

“Antibiotics are mostly one active substance, effective against only a narrow spectrum of bacteria. When used alive, these 13 lactic acid bacteria produce the right kind of antimicrobial compounds as needed, depending on the threat. It seems to have worked well for millions of years of protecting bees’ health and honey against other harmful microorganisms. However, since store-bought honey doesn’t contain the living lactic acid bacteria, many of its unique properties have been lost in recent times”, explains Tobias Olofsson.

This is a very cool: “When used alive, these 13 lactic acid bacteria produce the right kind of antimicrobial compounds as needed, depending on the threat.” As is the note that store bought honey doesn’t contain the living bacteria. My guess is some honey bought directly from farmers or bee-keepers, at farmer’s markets may well still have those live bacteria – but I am just guessing I may be wrong.

The next step is further studies to investigate wider clinical use against topical human infections as well as on animals.

The findings have implications for developing countries, where fresh honey is easily available, but also for Western countries where antibiotic resistance is seriously increasing.

Related: People are Superorganisms With Microbiomes of Thousands of SpeciesThe Search for Antibiotic Solutions Continues: Killing Sleeper Bacteria CellsOur Dangerous Antibiotic Practices Carry Great RisksPotential Antibiotic Alternative to Treat Infection Without Resistance
Read more

USA Designates Large Areas of New Mexico and Arizona as Critical Habitat for Jaguars

Posted on September 13, 2014  Comments (0)

The U.S. Fish and Wildlife Service has designated 764,200 acres of critical habitat for the jaguar (Panthera onca) under the Endangered Species Act (ESA). This habitat is found within Pima, Santa Cruz and Cochise counties in Arizona, and Hidalgo County in New Mexico.

The final rule reflects the following changes from the July 1, 2013, critical habit at proposal: exclusion of Tohono O’odham Nation lands (78,067 acres) as a result of the Tribe’s efforts working in partnership with the Service to conserve jaguar and other listed species’ habitat on the Nation’s sovereign land. Exemption of Fort Huachuca lands (15,867 acres) due to the conservation benefits to the jaguar provided in Fort Huachuca’s approved Integrated Natural Resource Management Plan.

The revised proposal was based on an updated habitat modeling report that more accurately reflected habitat essential to jaguars in northwestern Mexico and southwestern United States.

Mexico borderlands area is very different from habitat in Central and South America, where jaguars show a high affinity for lowland wet communities. Jaguars have been documented in arid areas of northwestern Mexico and southwestern United States, including thornscrub, desertscrub, lowland desert, mesquite grassland, Madrean oak woodland and pine oak woodland communities. Critical habitat in the United States contributes to the jaguar’s persistence and recovery across the species’ entire range by providing areas to support individuals that disperse into the United States from the nearest core population in Mexico.

Critical habitat is a term defined in the ESA and identifies geographic areas containing features essential to the conservation of a threatened or endangered species and that may require special management considerations or protection. The designation of critical habitat does not affect land ownership or establish a refuge, and has no impact on private landowners taking actions on their land that do not require federal funding or permits.

Related: Jaguars Back in the Southwest USA (2006 post)Big Cats in America (2004)Mountain Lions Returning to the Midwest USA for the First Time in a Century (2012)Backyard Wildlife: Mountain Lion

Read more

Engineering Graduates Earned a Return on Their Investment In Education of 21%

Posted on September 8, 2014  Comments (3)

A recent report from the New York Fed looks at the economic benefits of college. While there has been a great deal of talk about the “bubble” in higher education the Fed finds college is very wise economically for most people. They do find a larger portion of people that are not getting a great return on their investment in higher education.

That could well indicate students studying certain majors and perhaps some people with less stellar academic skills would be better off economically skipping college.

Do the Benefits of College Still Outweigh the Costs?

an analysis of the economic returns to college since the 1970s demonstrates that the benefits of both a bachelor’s degree and an associate’s degree still tend to outweigh the costs, with both degrees earning a return of about 15 percent over the past decade. The return has remained high in spite of rising tuition and falling earnings because the wages of those without a college degree have also been falling, keeping the college wage premium near an all-time high while reducing the opportunity cost of going to school.

It is hard to beat a 15% return. Of course averages hide variation within the data.

The return to engineer graduates was the greatest of all disciplines examined. Engineering graduates earned a return on their investment of 21%. The next highest were math and computers (18%); health (18%); and business (17%). Even the lowest returns are quite good: education (9%), leisure and hospitality (11%), agriculture (11%) and liberal arts (12%).

These returns look at graduates without post-graduate degrees (in order to find the value of just the undergraduate degree). As those with higher degrees benefit even more but the return on graduate degrees is not part of this study and they didn’t want to confuses the benefits of the post graduate degree with the bachelors degree.

As the article points out those fields with the top returns are more challenging and likely those students are more capable on average so a portion of the return may be due to the higher capabilities of the students (not just to the major they selected). They don’t mention it but engineering also has a higher drop out rate – not all students that would chose to major in engineering are able to do so.

This is one more study showing what we have blog about many times before: science and engineering careers are very economically rewarding. The engineering job market remains strong across many fields; many companies are turning to engineering job placement firms to find specialized staff. While the engineers do voice frustration at various aspects of their jobs the strong market provides significant advantages to an engineering career. As I have said before the reason to chose a career is because that is the work you love, but in choosing between several possible careers it may be sensible to consider the likely economic results.

The study even examines the return for graduates that are continually underemployed (I am not really sure how they get this data, but anyway…) the return for engineers in this situation is still 17% (it is 12% across all majors).

Related: Earnings by College Major, Engineers and Scientists at the Top (2013)Engineering Graduates Continue to Reign Supreme (2013)Career Prospect for Engineers Continues to Look Positive (2011)

Self Driving Cars Have Huge Potential for Benefit to Society

Posted on September 6, 2014  Comments (1)

Self-driving cars was something that seemed very far-fetched when I first read Google was seriously investing in pursuing that idea as a commercially viable product (Google’s Self Driving Car – 2010 post). I quickly became convinced they were right. I still think it is questionable if they will succeed (the political issues may well be even more difficult than technical ones). But the chances of success seem reasonable and the investment in research could provide a huge payoff.

Google’s self driving cars have driven 700,000 miles without an accident already; which is amazing. Warren Buffett stated that “self-driving cars are a real threat to the car insurance business” (His company owns the GIECO car insurance company) at the 2014 Berkshire Hathaway shareholder meeting in Omaha.

There are some people, stressing that this is not ready for mass market use. They are right. But, I think it is funny to see people thinking that a very early stage huge innovation in transportation not being ready today is a reasonable criticism. I am amazed that this huge innovation may actually be available before 2020. That would be incredible.

Certainly even then it will have limitations. And certainly there will be accidents. The current transportation system with humans driving cars has thosands of accidents a day and tens of thousands of deaths a year in the USA alone every year. Every year 1.2 million people die worldwide in traffic-related incidents, and over 90% of those accidents are due to human error.

Read more

  • Recent Comments:

    • curiouscat: Animation is used to enhance the message of the webcast, it isn’t used as a joke. Here is...
    • kaziya: i dont understand why you guys are taking this Ebola virus as ajoke like i mean this stuff is...
    • sonika dewakar: yes i am agree apple is very beneficial for our health and face also i like like your blog.
    • Jordan Baker: Good article, information is first class, The digestion of livestock type compared to other...
    • Sona mathews: Thanks for this nice article. iPhone are not only addiction but they are also a fashion trend...
    • engineering: Waoooh am so happy to hear this the future is bright for my engineering dream… Am just...
    • Upendra: Really interesting post. Will they work in unorganized roads like Indian roads? Thanks
    • Anonymous: Amazing and confusing at the same time to see a cat skateboarding, and being able to jump off of...