Currently browsing the Education Category

General education related posts. Sub-categories include primary and secondary education, higher education and scholarships and fellowships.
Recommended posts: The Future is Engineering - NSF Graduate Research Fellowship - USA Under-counting Engineering Graduates - K-12 Science Education in USA - The Best Research Universities globally - What do Science and Engineering Graduates Do? - Open Access Legislation
Related: Curious Cat Alumni Connections

14 Year Old Signs $700,000 MOU for a Drone to Detect and Defuse Land Mines

Harshwardhan Zala, from Gujarat, India has signed an agreement worth Rs. 5 crore (US$733,940) to explore the possibility of commercial production of a drone created by him which can help in detecting and defusing landmines.

Harshwardhan started work on the prototype of the landmine-detecting drone last year after reading in newspapers about high army casualties due to landmines. Aerobotics7 is the company founded by the 14 years old.

Harshwardhan Zala, 14-year-old trends for Rs 5 crore deal at Vibrant Gujarat Global Summit 2017!

Explaining more about the drone, the zealous 14-year-old said, “The drone is designed to send out waves that cover eight sq. mt area while flying two feet above the surface; the waves detect land mines and communicate their location with a base station. The drone also carries a bomb weighing 50 gram that can be used to destroy the landmine.” Harshwardhan Zala’s proud father Pradhyumansinh is an accountant with a plastic company in Naroda, and his mother Nishaba is a homemaker.

[missing video – removed 🙁 ]

The video has Harshwardhan speaking a bit of English but mainly some other language that I don’t understand. If I understand right, his drone is 98% accurate at identifying mines (where the current solutions are 92% accurate – and much more dangerous for those having to walk around testing). His solution is 17 times faster and 22 times cheaper than the current solutions. Once the mine is detected by the drone through an infrared sensor, a 50 gram detonator will complete the task of defusing it (blowing it up).

This video shows a bit of the drone itself (non-English audio)

Continue reading

PISA Science Education Results Show Singapore, Japan and Estonia Leading

The most comprehensive comparison of student achievement in math and science around the globe is completed by the Organisation for Economic Co-operation and Development (OECD). The 2015 Program for International Student Assessment (PISA) focuses on science understanding of 15 year olds (the 2012 report focused on math).

2015 results for the science portion (rank – country – mean score)(I am not listing all countries):

  • 1 – Singapore – 556
  • 2 – Japan – 538
  • 3 – Estonia – 534
  • 4 – Taiwan – 532
  • 5 – Finland – 531
  • 6 – Canada – 528
  • 7 – Vietnam – 525
  • 8 – China – 520*
  • 9 – Korea – 516
  • 13 – Germany – 509
  • 13 – UK – 509
  • 23 – USA – 496
  • 26 – Sweden – 493 (this is also the OECD average)
  • 56 – Mexico – 416
  • 61 – Brazil – 401

* I am merging several distinct Chinese locations reported in the official report.

The 2015 PISA include 72 participating countries and economies. From the PISA report:

On average across OECD countries, 25% of boys and 24% of girls reported that they expect to work in a science-related occupation. But boys and girls tend to think of working in different fields of science: girls envisage themselves as health professionals more than boys do; and in almost all countries, boys see themselves as becoming information and communications technologies (ICT) professionals, scientists or engineers more than girls do.

Related: 2009 results of science education student achievement around the globe2012 results for the science portion (math was the focus in 2012)The Economic Consequences of Investing in Science EducationCountry H-index Ranking for Science Publications

International Science Research Scholar Grants

The Howard Hughes Medical Institute (HHMI), Bill & Melinda Gates Foundation, Wellcome Trust, and Calouste Gulbenkian Foundation have announced the International Research Scholars Program which aims to support up to 50 outstanding early career scientists worldwide. The program’s aim is to help develop scientific talent worldwide.

The new international competition is seeking top early career researchers from a wide variety of biomedical research fields. Applicants must have started their first independent research position on or after April 1, 2009. Awardees will be invited to participate in research meetings with scientists supported by the funders. These meetings facilitate the exchange of ideas, stimulate new research, and provide an opportunity for collaborative endeavors within the international scientific community.

  • Awardees will receive a total of $650,000 over five years.
  • Applications are due June 30, 2016.
  • Awardees will be notified in April 2017.

HHMI and its partners have committed a total of $37.4 million for the International Research Scholars Program and will award each scientist who is selected a total of $650,000 over five years. The competition is open to scientists who have trained in the U.S. or United Kingdom for at least one year. Additionally, eligible scientists must have run their own labs for less than seven years, and work in one of the eligible countries.

Nieng Yan

Although Nieng Yan had several grants when she started her lab at Tsinghua University in 2007, she barely had enough money to pay her eight lab members. “In China, there is a limit on the percentage of a grant that you can use to pay people — your graduate students, your postdocs, your technicians, your assistants — to a decent level,” she explains. After struggling to balance her budget for several years, Yan’s scientific achievements and potential landed her an international grant from HHMI in 2012. “The amount of money provided by Hughes is relatively small compared to other programs, but it has the advantage that you can freely decide what to do with it,” says Yan. In fact, HHMI’s science officers encouraged Yan to use her five-year International Early Career Award (IECS) to cover the cost of paying her lab team, explaining that the money could be used in any way that assisted her research. Today, Yan has 15 people working in her lab helping to elucidate the structures of proteins that move molecules in and out of cells. The protein channels and transporters they study are mutated in a number of diseases — including diabetes and cancer — and understanding how they work could help in the development of drugs that block their ill effects. For example, the team recently solved the structure of GLUT1 – a glucose transporter that is often overexpressed in malignant tumor cells. Their data may provide clues for how to inhibit the transporter and perhaps even reveal a way to use it to deliver chemotherapeutic drugs. Photo Credit: Kevin Wolf (AP)

Countries that are not eligible for this competition include the G7 countries (Canada, France, Germany, Italy, Japan, United Kingdom and United States), as well as countries identified by the U.S. Department of Treasury, Office of Foreign Assets Control (OFAC) as being subject to comprehensive country or territory-wide sanctions or where current OFAC regulations prohibit U.S. persons or entities from engaging in the funding arrangements contemplated by this grant program. For this program, such sanctioned countries or territories currently include Iran, North Korea, Sudan, Syria, and the Crimea region of Ukraine.

Related: Directory of Science and Engineering Scholarships and FellowshipsFunding Sources for Independent Postdoctoral Research Projects in BiologyScientific Research Spending Cuts in the USA and Increases Overseas are Tempting Scientists to Leave the USA (2013)HHMI Expands Support of Postdoctoral Scientists (2009)Science, Engineering and Math Fellowships

Funding Sources for Independent Postdoctoral Research Projects in Biology

Here is a nice list of funding sources for independent postdoctoral research projects in biology.

Some examples:

Directory of select science and engineering scholarships and fellowships for undergraduates, graduates and faculty on our blog.

Related: Science, Engineering and Math Fellowships (2008)Proposal to Triple NSF GFRP Awards and the Size of the Awards by 33% (2007)HHMI Expands Support of Postdoctoral ScientistsNSF Graduate Research Fellow Profiles (Sergy Brin, Google co-founder)

MudWatt: Make Power From Mud!

Keegan Cooke and Kevin Rand created MudWatt kits as a way to engage kids/students with science. From the website:

We want to show kids this brighter side of STEM, to empower them to become the great problem solvers of tomorrow. Because let’s face it, there are plenty of problems in the world that need solving.

Unfortunately, our experience in school wasn’t unique. In 2011, less than one-third of 8th graders in the U.S. were deemed proficient in science. Today, 70% of the fastest growing careers are in STEM fields. The supply of STEM education is not meeting the demand.

Most of the world’s mud contain microbes that produce electricity when they eat. That is the engine driving the MudWatt. Colonies of special bacteria (called shewanella and geobacter) generate the electricity in a MudWatt.

The electricity output is proportional to the health and activity of that bacterial colony. By maintaining these colonies in different ways, you can use MudWatt to run all kinds of great experiments. Thus the MudWatt allows kids to engage with science, using their natural curiosity to experiment and learn. Engaging this too-often-neglected human potential will bring joy to those kids (as kids and as grown-ups) and benefit our society.

With standard topsoils, typical power levels are around 100 microWatts, which is enough to power the LED, buzzer, clock, etc..

Related: Arduino, open source hardware (Introduction Video Tutorial)Teaching Through TinkeringAwesome Gifts for the Maker in Your LifeQubits Construction Toy

2014 Ranking of the World’s Best Research Universities

Shanghai’s Jiao Tong University produces an annual ranking of research universities. The methodology values publications and faculty awards (Nobel and Fields) which belies the focus on ranking research not for example the quality of education provided.

You could argue one measure does partially address teaching as the Nobel and Fields prizes to alumni are created to the institution (that is separate from a measure of faculty that receive those honors). I would agree it partially measure the education though it also measures the ability of that school to attract the absolute best candidates (whether they would have been just as successful going elsewhere is a fair question).

Results from the 2014 rankings of top 500 universities with the number of schools by country:

location Top 100 % of World
Population
% of World GDP % of top 500
USA 52     4.5%   22.2%  29.2%
United Kingdom   8  0.9  3.5 7.6
Germany   4  1.1  5.0 7.8
Canada   4  0.5  2.4 4.2
France   4  0.9  3.8 4.2
Japan   3  1.8  7.8 3.8
Australia   4  0.3  1.5 3.8
China   0  19.2  11.7 8.8
Netherlands   4  0.2  1.3 2.6
Sweden   4  0.1  0.8 2.2
Switzerland   5  0.1  0.8 1.4
South Korea   0  .7  1.7 2.0
India   0  17.0  1.9 0.2

The top countries for top 100 and top 500 schools are listed above, but I skip over many after the top 7 or 8 to include a few countries I like to watch, see the ranking site for the full list. Country population and GDP data were taken from the World Development Indicators 2013, by the World Bank.

There is little change in top 100 since 2008, which I think is a good sign, it wouldn’t make much sense to have radical shifts quickly in this type of ranking. The USA lost 2 schools in the top 100, UK lost 3, Germany lost 2, Switzerland gained 2, Netherlands gain 2…

There is more change in the top 500 where changes are more sensible (there is probably not much separating schools ranked in the 300’s from those in the 500’s so variation and strong pushes (from countries like China) can have an impact. China gained 14 more schools in the top 500. China’s GDP also increased from 6.6% of global GDP to 11.7%.

University of Wisconsin – Madison is 24th, it was 17th in 2008 My father taught there while I grew up.
Continue reading

Using The Building of Robots to Engage Students in Learning

Fundi bots has a mission to use robotics training in African schools to create and inspire a new generation of problem solvers, innovators and change-makers. I believe strongly in this type of effort. We waste so much human potential by killing students design to learn. Instead we need to create systems that not only don’t kill that desire but allow it to flourish.

Fundi Bots focuses on the technological process of building robots as a way for students to look at the world around them from a practical, solution oriented perspective. By guiding students through problem identification, brainstorming, collaboration, construction, programming, final deployment and system feedback, we show them how the problems around them can be solved through a technological approach and persistent reductive analysis.

Fundi Made is an effort to create professional grade electronics right in our Fundi Spaces, and deploy the products in five core market segments; home-automation, agriculture, energy, security and health.

Related: Promoting Innovation in Sierra LeoneLetting Children Learn using Hole in the Wall ComputersGiven Tablets but No Teachers, Kids Teach Themselves (Having Never Seen Advanced Technology Before)Teaching Through TinkeringEncouraging Curiosity in Kids20th Annual US First Robotics Competition (2012)

STEM Graduates in the USA: 465,000 Women and 451,000 Men

STEM baccalaureate degrees in the USA in 2010 (reported by NSF in 2014):

Field Women
  
Men
Science (including math) 442,000 343,000
Engineering 23,000 108,000
Health 193,000 36,000
Total 658,000 486,000

If you exclude health, women still lead 465,000 to 451,000.

The same data for master’s degrees:

Field Women
  
Men
Science (including math) 86,000 72,000
Engineering 14,000 49,000
Health 97,000 22,000
Total 197,000 147,000

Excluding health the totals are: women 100,000, men 125,000.

In 2005, 235,197 women received undergraduate science and engineering degrees, compared to 230,806 for men. In 2005, 53,051 women received masters science and engineering degrees, compared to 66,974 men. All increased a large amount from 2005 to 2010 and degrees awarded to women increased much faster than the increase seen for men.

As I predicted in 2008 (Women Choosing Other Fields Over Engineering and Math) the trends continued and resulted in large imbalances in favor of women at the undergraduate level for science related degrees.

At the masters level women continue to increase degrees (nearly doubling from 2005 to 2010 excluding health). The relative gains (compared to men) at the masters level are small in that 5 year period, but it seems to me the news is mainly good. I expect women will show relative gains at the masters and PhD levels going forward, though those gains may well be slower than they were at the undergraduate level.

STEM fields continue to show large gender imbalances (with women and men dominating certain fields and being relatively rare in others). Continuing to provide opportunities for talented and interested students to explore their field of choice is important for the students well being and for the well being of society. We want to take advantage of the great minds we have and not have people excluded from pursuing their dreams.

Related: Alternative Career Paths Attract Many Women in Science FieldsThe USA is Losing Scientists and Engineers Educated in the USA

The Feynman Lectures on Physics Available Online

The Feynman Lectures on Physics are now available to read online. They are a great collection of lectures covering physics and touching on many areas including: the Mechanisms of Seeing, Semiconductors and Algebra. This is a fantastic resource for learning about physics.

You can also get a boxed set of The Feynman Lectures on Physics for those that like paper. It is fantastic but not cheap.

Bill Gates bought the rights to the rights to The Character of Physical Law, 7 lectures Feynman gave at Cornell University (these are separate from the lectures listed above) and made them available online, which is great. Unfortunately the website is based on Microsoft tools and therefore quite a bother for many (or maybe even impossible with Linux computers – I am not sure). I guess since he made all his money via Microsoft it isn’t that surprising but it would have been nice if he provide the content in a more easily accessible way (even if they didn’t do the fancy additions they did on the Microsoft site. These are great enough videos to probably be worth the bother of installing proprietary Microsoft software in order to view them.

Related: Video of Young Richard Feynman Talking About Scientific ThinkingFeynman “is a second Dirac, only this time human” (Oppenheimer) – Classic Feynman: All the Adventures of a Curious Character

iPhone Addition as Alternative to Expensive Ophthalmology Equipment

Researchers at the Stanford University School of Medicine have developed two inexpensive adapters that enable a smartphone to capture high-quality images of the front and back of the eye. The adapters make it easy for anyone with minimal training to take a picture of the eye and share it securely with other health practitioners or store it in the patient’s electronic record.

The researchers see this technology as an opportunity to increase access to eye-care services as well as to improve the ability to advise on patient care remotely.

The standard equipment used to photograph the eye is expensive — costing up to tens of thousands of dollars — and requires extensive training to use properly. Primary care physicians and emergency department staff often lack this equipment, and although it is readily available in ophthalmologists’ offices, it is sparse in rural areas throughout the world.

“Adapting smartphones for the eye has the potential to enhance the delivery of eye care — in particular, to provide it in places where it’s less accessible,” said Myung. “Whether it’s in the emergency department, where patients often have to wait a long time for a specialist, or during a primary-care physician visit, we hope that we can improve the quality of care for our patients, especially in the developing world where ophthalmologists are few and far between.”

“A picture is truly worth a thousand words,” he added. “Imagine a car accident victim arriving in the emergency department with an eye injury resulting in a hyphema — blood inside the front of her eye. Normally the physician would have to describe this finding in her electronic record with words alone. Smartphones today not only have the camera resolution to supplement those words with a high-resolution photo, but also the data-transfer capability to upload that photo securely to the medical record in a matter of seconds.

Continue reading

Starting a Career in Science to Fight Cancer

Keven Stonewall Preventing Colon Cancer from VNM USA on Vimeo.

Keven Stonewall is a student at the University of Wisconsin – Madison working to prevent colon cancer.

Related: I Always Wanted to be Some Sort of ScientistHigh School Student Creates Test That is Much More Accurate and 26,000 Times Cheaper Than Existing Pancreatic Cancer TestsWebcast of a T-cell Killing a Cancerous Cell

  • Recent Comments:

    • Richard Hopp: Awesome blog post, love the biodiversity. Really excited after watching this video, since I...
    • Robbie Miller: How fantastic, not only a great subject to study, but to be able to travel the world too....
    • Jaspal Singh: Japan has an edge when it comes to humanoid robots. No doubt in few more year, you will find...
    • Marcus Williams: This is actually a marvelous piece of engineering. Kudos for sharing!
    • M Zeeshan Haider: You are so interesting! I don’t believe I’ve truly read through anything like...
    • Jaspal Singh: I fully agree to the post idea. The farming is a natural process and should be free from any...
    • Touseef Ahmed: What a best creative idea I think you blong to india.
    • courier: I like the trailer 🙂
  • Recent Trackbacks:

  • Links