Currently browsing the Education Category

General education related posts. Sub-categories include primary and secondary education, higher education and scholarships and fellowships.
Recommended posts: The Future is Engineering - NSF Graduate Research Fellowship - USA Under-counting Engineering Graduates - K-12 Science Education in USA - The Best Research Universities globally - What do Science and Engineering Graduates Do? - Open Access Legislation
Related: Curious Cat Alumni Connections

MudWatt: Make Power From Mud!

Keegan Cooke and Kevin Rand created MudWatt kits as a way to engage kids/students with science. From the website:

We want to show kids this brighter side of STEM, to empower them to become the great problem solvers of tomorrow. Because let’s face it, there are plenty of problems in the world that need solving.

Unfortunately, our experience in school wasn’t unique. In 2011, less than one-third of 8th graders in the U.S. were deemed proficient in science. Today, 70% of the fastest growing careers are in STEM fields. The supply of STEM education is not meeting the demand.

Most of the world’s mud contain microbes that produce electricity when they eat. That is the engine driving the MudWatt. Colonies of special bacteria (called shewanella and geobacter) generate the electricity in a MudWatt.

The electricity output is proportional to the health and activity of that bacterial colony. By maintaining these colonies in different ways, you can use MudWatt to run all kinds of great experiments. Thus the MudWatt allows kids to engage with science, using their natural curiosity to experiment and learn. Engaging this too-often-neglected human potential will bring joy to those kids (as kids and as grown-ups) and benefit our society.

With standard topsoils, typical power levels are around 100 microWatts, which is enough to power the LED, buzzer, clock, etc..

Related: Arduino, open source hardware (Introduction Video Tutorial)Teaching Through TinkeringAwesome Gifts for the Maker in Your LifeQubits Construction Toy

2014 Ranking of the World’s Best Research Universities

Shanghai’s Jiao Tong University produces an annual ranking of research universities. The methodology values publications and faculty awards (Nobel and Fields) which belies the focus on ranking research not for example the quality of education provided.

You could argue one measure does partially address teaching as the Nobel and Fields prizes to alumni are created to the institution (that is separate from a measure of faculty that receive those honors). I would agree it partially measure the education though it also measures the ability of that school to attract the absolute best candidates (whether they would have been just as successful going elsewhere is a fair question).

Results from the 2014 rankings of top 500 universities with the number of schools by country:

location Top 100 % of World
Population
% of World GDP % of top 500
USA 52     4.5%   22.2%  29.2%
United Kingdom   8  0.9  3.5 7.6
Germany   4  1.1  5.0 7.8
Canada   4  0.5  2.4 4.2
France   4  0.9  3.8 4.2
Japan   3  1.8  7.8 3.8
Australia   4  0.3  1.5 3.8
China   0  19.2  11.7 8.8
Netherlands   4  0.2  1.3 2.6
Sweden   4  0.1  0.8 2.2
Switzerland   5  0.1  0.8 1.4
South Korea   0  .7  1.7 2.0
India   0  17.0  1.9 0.2

The top countries for top 100 and top 500 schools are listed above, but I skip over many after the top 7 or 8 to include a few countries I like to watch, see the ranking site for the full list. Country population and GDP data were taken from the World Development Indicators 2013, by the World Bank.

There is little change in top 100 since 2008, which I think is a good sign, it wouldn’t make much sense to have radical shifts quickly in this type of ranking. The USA lost 2 schools in the top 100, UK lost 3, Germany lost 2, Switzerland gained 2, Netherlands gain 2…

There is more change in the top 500 where changes are more sensible (there is probably not much separating schools ranked in the 300’s from those in the 500’s so variation and strong pushes (from countries like China) can have an impact. China gained 14 more schools in the top 500. China’s GDP also increased from 6.6% of global GDP to 11.7%.

University of Wisconsin – Madison is 24th, it was 17th in 2008 My father taught there while I grew up.
Continue reading

Using The Building of Robots to Engage Students in Learning

Fundi bots has a mission to use robotics training in African schools to create and inspire a new generation of problem solvers, innovators and change-makers. I believe strongly in this type of effort. We waste so much human potential by killing students design to learn. Instead we need to create systems that not only don’t kill that desire but allow it to flourish.

Fundi Bots focuses on the technological process of building robots as a way for students to look at the world around them from a practical, solution oriented perspective. By guiding students through problem identification, brainstorming, collaboration, construction, programming, final deployment and system feedback, we show them how the problems around them can be solved through a technological approach and persistent reductive analysis.

Fundi Made is an effort to create professional grade electronics right in our Fundi Spaces, and deploy the products in five core market segments; home-automation, agriculture, energy, security and health.

Related: Promoting Innovation in Sierra LeoneLetting Children Learn using Hole in the Wall ComputersGiven Tablets but No Teachers, Kids Teach Themselves (Having Never Seen Advanced Technology Before)Teaching Through TinkeringEncouraging Curiosity in Kids20th Annual US First Robotics Competition (2012)

STEM Graduates in the USA: 465,000 Women and 451,000 Men

STEM baccalaureate degrees in the USA in 2010 (reported by NSF in 2014):

Field Women
  
Men
Science (including math) 442,000 343,000
Engineering 23,000 108,000
Health 193,000 36,000
Total 658,000 586,000



If you exclude health, women still lead 465,000 to 451,000.

The same data for master’s degrees:

Field Women
  
Men
Science (including math) 86,000 72,000
Engineering 14,000 49,000
Health 97,000 22,000
Total 197,000 147,000



Excluding health the totals are: women 100,000, men 125,000.

In 2005, 235,197 women received undergraduate science and engineering degrees, compared to 230,806 for men. In 2005, 53,051 women received masters science and engineering degrees, compared to 66,974 men. All increased a large amount from 2005 to 2010 and degrees awarded to women increased much faster than the increase seen for men.

As I predicted in 2008 (Women Choosing Other Fields Over Engineering and Math) the trends continued and resulted in large imbalances in favor of women at the undergraduate level for science related degrees.

At the masters level women continue to increase degrees (nearly doubling from 2005 to 2010 excluding health). The relative gains (compared to men) at the masters level are small in that 5 year period, but it seems to me the news is mainly good. I expect women will show relative gains at the masters and PhD levels going forward, though those gains may well be slower than they were at the undergraduate level.

STEM fields continue to show large gender imbalances (with women and men dominating certain fields and being relatively rare in others). Continuing to provide opportunities for talented and interested students to explore their field of choice is important for the students well being and for the well being of society. We want to take advantage of the great minds we have and not have people excluded from pursuing their dreams.

Related: Alternative Career Paths Attract Many Women in Science FieldsThe USA is Losing Scientists and Engineers Educated in the USA

The Feynman Lectures on Physics Available Online

The Feynman Lectures on Physics are now available to read online. They are a great collection of lectures covering physics and touching on many areas including: the Mechanisms of Seeing, Semiconductors and Algebra. This is a fantastic resource for learning about physics.

You can also get a boxed set of The Feynman Lectures on Physics for those that like paper. It is fantastic but not cheap.

Bill Gates bought the rights to the rights to The Character of Physical Law, 7 lectures Feynman gave at Cornell University (these are separate from the lectures listed above) and made them available online, which is great. Unfortunately the website is based on Microsoft tools and therefore quite a bother for many (or maybe even impossible with Linux computers – I am not sure). I guess since he made all his money via Microsoft it isn’t that surprising but it would have been nice if he provide the content in a more easily accessible way (even if they didn’t do the fancy additions they did on the Microsoft site. These are great enough videos to probably be worth the bother of installing proprietary Microsoft software in order to view them.

Related: Video of Young Richard Feynman Talking About Scientific ThinkingFeynman “is a second Dirac, only this time human” (Oppenheimer) – Classic Feynman: All the Adventures of a Curious Character

iPhone Addition as Alternative to Expensive Ophthalmology Equipment

Researchers at the Stanford University School of Medicine have developed two inexpensive adapters that enable a smartphone to capture high-quality images of the front and back of the eye. The adapters make it easy for anyone with minimal training to take a picture of the eye and share it securely with other health practitioners or store it in the patient’s electronic record.

The researchers see this technology as an opportunity to increase access to eye-care services as well as to improve the ability to advise on patient care remotely.

The standard equipment used to photograph the eye is expensive — costing up to tens of thousands of dollars — and requires extensive training to use properly. Primary care physicians and emergency department staff often lack this equipment, and although it is readily available in ophthalmologists’ offices, it is sparse in rural areas throughout the world.

“Adapting smartphones for the eye has the potential to enhance the delivery of eye care — in particular, to provide it in places where it’s less accessible,” said Myung. “Whether it’s in the emergency department, where patients often have to wait a long time for a specialist, or during a primary-care physician visit, we hope that we can improve the quality of care for our patients, especially in the developing world where ophthalmologists are few and far between.”

“A picture is truly worth a thousand words,” he added. “Imagine a car accident victim arriving in the emergency department with an eye injury resulting in a hyphema — blood inside the front of her eye. Normally the physician would have to describe this finding in her electronic record with words alone. Smartphones today not only have the camera resolution to supplement those words with a high-resolution photo, but also the data-transfer capability to upload that photo securely to the medical record in a matter of seconds.

Continue reading

Starting a Career in Science to Fight Cancer

Keven Stonewall Preventing Colon Cancer from VNM USA on Vimeo.

Keven Stonewall is a student at the University of Wisconsin – Madison working to prevent colon cancer.

Related: I Always Wanted to be Some Sort of ScientistHigh School Student Creates Test That is Much More Accurate and 26,000 Times Cheaper Than Existing Pancreatic Cancer TestsWebcast of a T-cell Killing a Cancerous Cell

Math Education Results Show China, Singapore, Korea and Japan Leading

The most comprehenvise comparison of student achievement in math and science around the globe undertaken by the Organisation for Economic Co-operation and Development (OECD). The 2012 Program for International Student Assessment (PISA) focuses on math understanding of 15 year olds (the 2014 report will focus on science). The 2009 report focused on the results of science education student achievement around the globe.

2012 results for the math portion (rank – country – mean score)(I am not listing all countries):

  • 1 – Singapore – 573
  • 2 – Korea – 554
  • 3 – Japan – 536
  • 5 – Switzerland – 531
  • 6 – Netherlands – 523
  • 7 – Estonia – 521
  • 8 – Finland – 519
  • 9 – Canada – 518
  • 12 – Germany – 514
  • 24 – UK – 494 (this is also the OECD average)
  • 34 – USA – 481
  • 49 – Malaysia – 421
  • 50 – Mexico – 413

All 34 OECD member countries and 31 partner countries and economies participated in PISA 2012, representing more than 80% of the world economy. Portions of China participated and did very well including Shanghai-China (highest mean score of 613 points – if you ranked that as a country, I ignored these “regional results” in the ranks I shown here), Hong Kong-China (561, 3rd if including countries and regions together), Chinese Taipei [Taiwan] (560, 4th), Macao-China (538, 6th).

Boys perform better than girls in mathematics in 38 out of the 65 countries and economies that participated in PISA 2012, and girls outperform boys in 5 countries.

Related: Playing Dice and Children’s NumeracyNumeracy: The Educational Gift That Keeps on GivingMathematicians Top List of Best OccupationsThe Economic Consequences of Investing in Science EducationCountry H-index Ranking for Science PublicationsEconomic Strength Through Technology Leadership

Continue reading

Pedal Powered Washing Machine

It is very easy to forget billions of people alive today do not have access to electricity, clean water and things like washing machines at home. As I have said before I love appropriate technology. Even more than that I love to see successful deployments of appropriate technology that make people’s lives better.

It is also great to see kids with the perseverance to make these products to meet needs they see around them. We need to do what we can to encourage these types of kids. They are the future engineers and entrepreneurs that will make lives better for the rest of society.

Remya Jose, a 14 year school girl from Kerala, India created this wonderful machine. Another version of it, has the normal bike pedals (closer together, instead of spread out, on opposite sides of the machine, like in the video).

As far as I can tell the original video was from 2008 (and Remya created the machine in 2005). I haven’t been able to find the current status of the product, this is the best I could find (from 2008). Turning these innovations into products that succeed commercially is very hard.

If I had control of a national development program (or if I just become super rich and have millions to devote to making the world better, I think an effort like this would be something I would try) I would put working with these kids to make the products work very high on my list of priorities. The learning process and creation of engineers and entrepreneurs would be extremely valuable on top of any success the products had.

Related: Appropriate Technology: Washing Clothes by Machine Instead by HandWashing Machine Uses 90% Less WaterEngineering a Better World: Bike Corn-Shelleranother bicycle washing machineAutomatic Dog Washing Machine

Continue reading

Learn About Biology Online

Very cool site for learning about biology. I have tried the courses offered by Coursera but they are too structured for my taste. I want to be able to learn at my pace and dip into the areas I find interesting. Coursera is more like a real course, that has weekly assignments and the like.

Survivebio is a resources that matches my desires exactly. You can go and learn about whatever topics you desire, when you desire. The site offers webcasts, games, flashcards, chapter outlines, practice tests and a forum to discuss the ideas.

In this webcast, Paul Andersen discusses the specifics of phylogenetics. The evolutionary relationships of organisms are discovered through both morphological and molecular data.

The aim of the SurviveBio web site is to aid AP (and college) biology students. But it is also a great resource to learn about biology if you are interested in that topic. Hopefully they will add more webcasts. The site uses webcasts from Bozeman Science which has a huge number of very good videos on biology and also, chemistry, physics, earth science, statistics, anatomy and physiology.

Related: Great Webcast Explaining the Digestive SystemsCell Aging and Limits Due to TelomeresHuman Gene Origins: 37% Bacterial, 35% Animal, 28% Eukaryotic

Given Tablets but No Teachers, Kids Teach Themselves – Having Never Seen Advanced Technology Before

In a repetition of an experiment I have posted about here on the Curious Cat Science and Engineering Blog before (Letting Children Learn – Hole in the Wall Computers): Given Tablets but No Teachers, Ethiopian Children Teach Themselves

The experiment is being done in two isolated rural villages with about 20 first-grade-aged children each, about 50 miles from Addis Ababa. One village is called Wonchi, on the rim of a volcanic crater at 11,000 feet; the other is called Wolonchete, in the Great Rift Valley. Children there had never previously seen printed materials, road signs, or even packaging that had words on them, Negroponte said.

Earlier this year, OLPC workers dropped off closed boxes containing the tablets, taped shut, with no instruction. “I thought the kids would play with the boxes. Within four minutes, one kid not only opened the box, found the on-off switch … powered it up. Within five days, they were using 47 apps per child, per day. Within two weeks, they were singing ABC songs in the village, and within five months, they had hacked Android,” Negroponte said. “Some idiot in our organization or in the Media Lab had disabled the camera, and they figured out the camera, and had hacked Android.”

Nicholas Negroponte has tendency to overstate the fact from what I remember. I don’t think what he claims as “hacking Android” here is what a real scientist would claim as than is a write up of the results of the experiment. He could well mean they updated a setting or some similar thing. It is a shame to mislead when the bare facts are so cool. And possibly he isn’t misleading – I just am worried he is.

Also what does 47 apps per day mean? I can’t understand how you can usefully (including entertainment do that in any sensible way) – I doubt I use 15 applications in a month and I use the computer hours every single day. Makes me worry that “using” is not a very enlightening piece of data – instead just trying to make it seem like using 47 must mean they are engaged; it seems more likely to me to mean they are not used successfully so they have to go try something else or they are counting “used” in ways we wouldn’t.

Once a week, a technician visits the villages and swaps out memory cards so that researchers can study how the machines were actually used.

These kinds of experiments are very cool. They show how intrinsically curious we are are. Sadly our schools often beat the curiosity out of kids instead of engaging it.

Related: What Kids can Learn (look at the same idea in 2006)Providing Computer to Remote Students in Nepal (2009)$100 Laptops for the World

  • Recent Comments:

    • Gerd: That is really cool. I have to say that food choices change once we learn how many calories they...
    • Alice David: I liked your post and I wanna add that Sometimes we think that spider silk may be weak but it...
    • malek: Hi, you are a realy geat man. I like this your 3D Printing. I can not believe my eyes. very very...
    • Felix Erude: Being originally from Africa myself, I was absolutely thrilled to read this story. Sometimes...
    • Nirab Khan: I’m also hopping 3D printing continues to evolve. It would be incredible to just have to buy a...
    • Rahul: Wow!!!! It’s wonderful. The places are just amazing. And cats are cute. Some are scary though...
    • Bilgisayar Dünyası: Very cute.But also very wild..
    • Adela: I saw one on a expo I saw last month and I think that is very innovative and I heard that they want...
  • Recent Trackbacks:

  • Links