Posts about HHMI

International Science Research Scholar Grants

The Howard Hughes Medical Institute (HHMI), Bill & Melinda Gates Foundation, Wellcome Trust, and Calouste Gulbenkian Foundation have announced the International Research Scholars Program which aims to support up to 50 outstanding early career scientists worldwide. The program’s aim is to help develop scientific talent worldwide.

The new international competition is seeking top early career researchers from a wide variety of biomedical research fields. Applicants must have started their first independent research position on or after April 1, 2009. Awardees will be invited to participate in research meetings with scientists supported by the funders. These meetings facilitate the exchange of ideas, stimulate new research, and provide an opportunity for collaborative endeavors within the international scientific community.

  • Awardees will receive a total of $650,000 over five years.
  • Applications are due June 30, 2016.
  • Awardees will be notified in April 2017.

HHMI and its partners have committed a total of $37.4 million for the International Research Scholars Program and will award each scientist who is selected a total of $650,000 over five years. The competition is open to scientists who have trained in the U.S. or United Kingdom for at least one year. Additionally, eligible scientists must have run their own labs for less than seven years, and work in one of the eligible countries.

Nieng Yan

Although Nieng Yan had several grants when she started her lab at Tsinghua University in 2007, she barely had enough money to pay her eight lab members. “In China, there is a limit on the percentage of a grant that you can use to pay people — your graduate students, your postdocs, your technicians, your assistants — to a decent level,” she explains. After struggling to balance her budget for several years, Yan’s scientific achievements and potential landed her an international grant from HHMI in 2012. “The amount of money provided by Hughes is relatively small compared to other programs, but it has the advantage that you can freely decide what to do with it,” says Yan. In fact, HHMI’s science officers encouraged Yan to use her five-year International Early Career Award (IECS) to cover the cost of paying her lab team, explaining that the money could be used in any way that assisted her research. Today, Yan has 15 people working in her lab helping to elucidate the structures of proteins that move molecules in and out of cells. The protein channels and transporters they study are mutated in a number of diseases — including diabetes and cancer — and understanding how they work could help in the development of drugs that block their ill effects. For example, the team recently solved the structure of GLUT1 – a glucose transporter that is often overexpressed in malignant tumor cells. Their data may provide clues for how to inhibit the transporter and perhaps even reveal a way to use it to deliver chemotherapeutic drugs. Photo Credit: Kevin Wolf (AP)

Countries that are not eligible for this competition include the G7 countries (Canada, France, Germany, Italy, Japan, United Kingdom and United States), as well as countries identified by the U.S. Department of Treasury, Office of Foreign Assets Control (OFAC) as being subject to comprehensive country or territory-wide sanctions or where current OFAC regulations prohibit U.S. persons or entities from engaging in the funding arrangements contemplated by this grant program. For this program, such sanctioned countries or territories currently include Iran, North Korea, Sudan, Syria, and the Crimea region of Ukraine.

Related: Directory of Science and Engineering Scholarships and FellowshipsFunding Sources for Independent Postdoctoral Research Projects in BiologyScientific Research Spending Cuts in the USA and Increases Overseas are Tempting Scientists to Leave the USA (2013)HHMI Expands Support of Postdoctoral Scientists (2009)Science, Engineering and Math Fellowships

How do Plants Grow Into the Sunlight?

Plants are extremely competitive in gaining access to sunlight. A plant’s primary weapon in this fight is the ability to grow towards the light, getting just the amount it needs and shadowing its competition. Now, scientists have determined precisely how leaves tell stems to grow when a plant is caught in a shady place.

photo of a forest

Hole in the Wall trail, Olympic National Park, Washington, USA by John Hunter

The researchers discovered that a protein known as phytochrome interacting factor 7 (PIF7) serves as the key messenger between a plant’s cellular light sensors and the production of auxins, hormones that stimulate stem growth.

“We knew how leaves sensed light and that auxins drove growth, but we didn’t understand the pathway that connected these two fundamental systems,” says Joanne Chory, professor and director of the Salk’s Plant Biology Laboratory and a Howard Hughes Medical Institute investigator (HHMI provides huge amounts of funding for scientific research). “Now that we know PIF7 is the relay, we have a new tool to develop crops that optimize field space and thus produce more food or feedstock for biofuels and biorenewable chemicals.”

Plants gather intelligence about their light situation—including whether they are surrounded by other light-thieving plants—through photosensitive molecules in their leaves. These sensors determine whether a plant is in full sunlight or in the shade of other plants, based on the wavelength of red light striking the leaves. This is pretty cool; I love to learn about the brilliant strategies that have evolved.

If a sun-loving plant, such as thale cress (Arabidopsis thaliana), the species Chory studies, finds itself in a shady place, the sensors will tell cells in the stem to elongate, causing the plant to grow upwards towards sunlight.

When a plant remains in the shade for a prolonged period, however, it may flower early and produce fewer seeds in a last ditch effort to help its offspring spread to sunnier real estate. In agriculture, this response, known as shade avoidance syndrome, results in loss of crop yield due to closely planted rows of plants that block each other’s light.

Continue reading

$60 Million in Grants for Undergraduate Science Education

The Howard Hughes Medical Institute (HHMI) is challenging colleges and universities to think creatively about how they educate future scientists, science teachers, and a scientifically-literate public. The Institute has invited 215 undergraduate-focused colleges and universities from across the country to apply for a total of $60 million in science education grants. I am very happy that HHMI continues to help provide support for science education.

Sadly USA government leaders (local and national) have chosen to cut the importance they place on science education over the last few decades we have coasted on the gains we made in the 1960s and 1970s. That is no way to succeed. Thankfully a few foundations, with HHMI probably leading the way, and some great schools have kept the USA in a leadership position, but that leadership shrinks each year. And at the primary and secondary school level the USA dropped far back in the pack decades ago for science eduction The top countries in primary and secondary science education are now Finland, Hong Kong and Korea.

Since 1988, the Howard Hughes Medical Institute has awarded $820 million to 264 colleges and universities to support science education. Those grants have generally been awarded through two separate but complementary efforts, one aimed at undergraduate-focused institutions and the other at research universities. HHMI support has enabled more than 80,000 students nationwide to work in research labs and developed programs that have helped 95,000 K-12 teachers learn how to teach science more effectively.

The new grants will range from $800,000 to $1.6 million over four years for individual institutions and up to $4.8 million over four years for those applying jointly.

Related: Science Courses for the Next Generation$60 Million for Science Teaching at Liberal Arts Colleges in 2008The Importance of Science EducationGenomics Course For College Freshman Supported by HHMI at 12 Universities$600 Million for Basic Biomedical ResearchScience and technology leadership

The biggest change in the new 2012 competition is the requirement that applicants focus on a single educational goal that unites their proposed science education program. In the past, HHMI’s grants have allowed applicants to submit projects in four categories: student research, faculty development, curriculum and laboratory development, and outreach. Although schools were not expected to put forward a program in every category, Asai notes the modular design of the grant competition often led schools to “check the boxes” rather than encouraging them to think strategically about how these activities can help them reach an overarching science education objective.
Continue reading

Students Will Spend Year Doing Career-Changing Research Thanks to HHMI

This year, 116 medical, dental, and veterinary students from 47 schools across the country will take a break from memorizing molecular metabolism and studying drug interactions to spend a year in a lab doing hands-on research. The break from regular coursework, funded through a $4 million Howard Hughes Medical Institute (HHMI) initiative, is intended to give students an opportunity to immerse themselves in science and consider whether they want to pursue a career as a physician-scientist.

Nearly 500 medical students applied for the research year through the HHMI-National Institutes of Health (NIH) Medical Research Scholars and HHMI Medical Research Fellows programs. Both efforts seek to strengthen and expand the pool of medically-trained researchers. The funding HHMI provides is a great resource.

“We want medical, dental, and veterinary students to become immersed in the life of academic science for at least a year. And we hope they get so engaged in the process and life of scientific research that they will decide to continue it for the rest of their lives,” says Peter Bruns, HHMI’s vice president for grants and special programs. “We need more doctors who do basic research to improve human health.”

As part of its commitment to fostering the translation of basic research discoveries into improved diagnoses and treatments, HHMI has developed a range of programs to nurture the careers of researchers who bridge the gap between clinical medicine and basic science. In addition to the programs for medical students, the Institute supports medical training for Ph.D. students in the basic sciences and has made specific efforts to fund top physician-scientists as HHMI investigators.

The medical research scholars and fellows programs are open to medical, dental, and veterinary students enrolled in U.S. schools. Most have completed the second or third year of their professional program when they spend a year working in a lab either at the NIH or at an academic medical center or research university they select. During the last 25 years, more than 2,100 students have participated.

The HHMI Medical Research Fellowships program allows medical, dental, and veterinary students to pursue biomedical research at a laboratory anywhere in the United States except the NIH campus in Bethesda. Each student submits a research plan to work in a specific lab with a mentor they have identified. Since 1989, about 1,200 students have participated.

This year, 74 students from 26 medical schools and two veterinary schools were chosen as fellows from a pool of 274. While most students elect to stay at their home institution to do their research, this year 17 fellows will work in labs at a different school. Their research topics include schizophrenia, wound healing, organ development, and many other important biological questions.

The HHMI-NIH Research Scholars program was established in 1985 to encourage medical students to pursue research by allowing them to take a year off from their medical studies. The program has since been expanded to include dental and veterinary students. It has enabled about 1,000 students to work in NIH labs.

Students selected as research scholars often enter the program with only a general idea of what type of research they would like to do. As soon as they are accepted, they begin researching the more than 1,100 laboratories at NIH. They meet with a number potential mentors before finalizing which project to pursue under the guidance of their NIH advisor and HHMI’s staff. The students are sometimes called “cloister scholars” because they live in apartments or dorm-style rooms in a refurbished cloister on the NIH campus in Bethesda.

This year, 42 students from 28 medical schools and one veterinary school were chosen as research scholars. More than 200 students from 93 schools applied.

Related: Directory of Science and Engineering Scholarships and Fellowships$600 Million for Basic Biomedical ResearchHHMI Expands Support of Postdoctoral ScientistsGenomics Course For College Freshman Supported by HHMI at 12 Universities

Science Courses for the Next Generation

During the last three years, the Howard Hughes Medical Institute (HHMI) has recruited 44 colleges and universities across the country to join its Science Education Alliance (SEA), which is changing how freshmen learn about science by providing them with an authentic, classroom-based research experience. Now professors from three schools offering the SEA course will help create the next generation of research-based courses that will extend the program’s reach to upperclassmen.

These “SEA sabbaticals” are another step toward HHMI’s long-term goal of making the SEA a resource for science educators nationwide. When HHMI unveiled the SEA program in 2007, it committed $4 million over four years to the development and rollout of the Alliance’s first course: the National Genomics Research Initiative. That year-long course has enabled freshmen to make real discoveries by doing research on phage, which are viruses that infect bacteria. The research-based laboratory course provides beginning college students with a true research experience that is teaching them how to approach scientific problems creatively and will hopefully solidify their interest in a career in science.

The freshmen students in the SEA course work closely with faculty to design experiments and make scientific discoveries. Many say the experience has changed their view of science. But it soon became apparent that one set of courses would not be enough to continue challenging students as they progressed through college. So HHMI decided to look for creative solutions to that problem.

HHMI invited the 27 schools currently participating in the SEA to apply, and three were accepted to develop new courses. These new projects are focused on designing a curriculum that will pick up where the virus genomics class ends.

Faculty from Cabrini College in Radnor, Pennsylvania, will develop a cellular and molecular biology course in which students will examine phage genes and determine which are essential for the virus’s survival. In a biochemistry course, students will purify and characterize the proteins produced by the genes to determine their function.

University of Louisiana at Monroe’s team will create three modules that could be used in several courses for juniors and seniors. In one, they will create lessons in which students develop methods to determine how their phages reproduce after they enter bacteria. Students would look at genetic markers to determine how phages should be classified into related “clusters” in a second module. Students taking the third course would explore the best way to determine whether genes are essential to the survival of the virus.

University of Puerto Rico, Cayey faculty will create a course to help students examine and characterize various phage proteins. Proteins of interest include those that make up the virus’s protective coating, and those that are activated once infection has begun.

HHMI continue to fund huge amounts of great work in science.

Full press release: Science Education Alliance Builds Research Courses for the Next Generation

Related: $60 Million for Science Teaching at Liberal Arts CollegesHHMI Expands Support of Postdoctoral Scientists$600 Million for Basic Biomedical ResearchHoward Hughes Medical Institute Takes Big Open Access Step

Movie Aims to Inspire College Students With Tales of Successful Minority Scientists

African American women are still rare in many science professions, despite their increasing representation in undergraduate science classes. The documentary – Roots to STEM: Spelman Women in Science—seeks to explore how these women were able to succeed and to hold them up as role models.

Tarsha Ward remembers begging her mother for a stethoscope so she could be the star of career day at her kindergarten class in Charleston, S.C. Her mother presented her with something that proved more prophetic: a white lab coat.

“For me that was the beginning of a career,” said Ward, who is working toward her doctorate in biomedical sciences at Morehouse School of Medicine in Atlanta, Ga., focused on cancer research. “Ever since then everything was about science.”

“If you get into a bind you have to think it out yourself,” she said. “A Ph.D. has really taught me to think on my own. You’re here thinking in the midnight hours and there’s no book to tell you what’s right. You just have to see if it works.”

Such struggles have already paid off. “In seven months, I published my first paper. I worked on it day and night,” said Ward, a 2004 Spelman graduate. “I (loved) the fact that I could find something no one else could find and actually publish it.”

Read the full press release

Related: Documentary on 5 Women Majoring in Science and Math at Ohio StateNational Girls Collaborative Project for STEMWomen Working in ScienceWomen Choosing Other Fields Over Engineering and MathHHMI Expands Support of Postdoctoral Scientists

HHMI Science Internships

Undergraduate Scholars Live the Scientific Life at Janelia Farm

With Janelia Farm lab heads as their mentors, the students have delved into projects that include identifying the neurons that control feeding behavior in fruit flies, designing better labeling molecules for use with sophisticated microscopy techniques, increasing the longevity of dragonflies, and developing computer programs for automated image analysis. The Janelia environment, they said, provides a unique opportunity to focus intently on research.

The summer program offers students more than just hands-on experience in the lab – it aims to expose them to a more complete picture of what it is to work and think as a scientist does. An important component of the program is a weekly seminar in which students present their work to one another and field questions. Likewise, scholars are encouraged to attend the campus’s frequent seminars, conferences, and journal clubs, for exposure to research other their own.

For Gloria Wu, who is majoring in biochemistry at the University of California, Berkeley, the interdisciplinary nature of research at Janelia Farm and the diversity of backgrounds among her fellow scholars were important assets. “A lot of students are coming from math or computer science backgrounds, and that really stimulates a lot of discussion between us, so we can see other approaches to solving biological questions. That is something really wonderful about this program,” she said.

Related: Summer Jobs for Smart Young MindsInternships Pair Students with Executivesscience internship directory

HHMI Expands Support of Postdoctoral Scientists

The Howard Hughes Medical Institute provides a huge amount of science and health care related funding. HHMI is expanding existing relationships to fund postdoc scientist fellows at with Jane Coffin Childs Memorial Fund, the Helen Hay Whitney Foundation, the Damon Runyon Cancer Research Foundation, and the Life Sciences Research Foundation. The funding should support 32 additional postdoc scientists. HHMI Expands Support of Postdoctoral Scientists

Fellows will be selected competitively by each organization. Each fellowship will have a three-year term. When the initiative is at full capacity, HHMI will be supporting 96 postdoctoral fellows at an anticipated annual cost of about $5 million. The program began in 2007 when HHMI announced it would fund up to 16 postdoctoral fellows in HHMI labs each year. There is no requirement that future fellows be appointed in HHMI labs.

Related: Genomics Course For College Freshman Supported by HHMI at 12 Universities$60 Million in Grants for UniversitiesHoward Hughes Medical Institute Takes Big Open Access Stepposts on science and engineering funding

Gene Duplication and Evolution

Roughly 10 million years ago, a major genetic change occurred in a common ancestor of gorillas, chimpanzees, and humans. Segments of DNA in its genome began to form duplicate copies at a greater rate than in the past, creating an instability that persists in the genome of modern humans and contributes to diseases like autism and schizophrenia. But that gene duplication also may be responsible for a genetic flexibility that has resulted in some uniquely human characteristics.

“Because of the architecture of the human genome, genetic material is constantly being added and deleted in certain regions,” says Howard Hughes Medical Institute investigator and University of Washington geneticist Evan Eichler, who led the project that uncovered the new findings. “These are really like volcanoes in the genome, blowing out pieces of DNA.”

Eichler and his colleagues focused on the genomes of four different species: macaques, orangutans, chimpanzees, and humans. All are descended from a single ancestral species that lived about 25 million years ago. The line leading to macaques broke off first, so that macaques are the most distantly related to humans in evolutionary terms. Orangutans, chimpanzees, and humans share a common ancestor that lived 12-16 million years ago. Chimps and humans are descended from a common ancestral species that lived about 6 million years ago.

By comparing the DNA sequences of the four species, Eichler and his colleagues identified gene duplications in the lineages leading to these species since they shared a common ancestor. They also were able to estimate when a duplication occurred from the number of species sharing that duplication. For example, a duplication observed in orangutan, chimpanzees, and humans but not in macaques must have occurred sometime after 25 million years ago but before the orangutan lineage branched off.

Eichler’s research team found an especially high rate of duplications in the ancestral species leading to chimps and humans, even though other mutational processes, such as changes in single DNA letters, were slowing down during this period.

Related posts: 8 Percent of the Human Genome is Old Virus GenesMutation Rate and EvolutionDNA Passed to Descendants Changed by Your Life
Continue reading

Searching for More Effective Tuberculosis Drugs

In India: A Search for More Effective Tuberculosis Drugs

The multi-drug regimen is a major problem for several reasons. It requires TB patients to manage taking four drugs exactly as prescribed over six to nine months. If patients don’t take the full course of the medicines, the TB bacteria may develop resistance to the drugs and become even more difficult to treat. To reduce that risk, many countries require that patients go to a clinic so a healthcare professional can watch them take the medication and ensure they are complying with their drug-treatment regimen. This is both expensive and time consuming. Gokhale said that a single drug that targets multiple pathways could save time and money by eliminating the need to take so many drugs over such a long period of time.

To create their new compound, Gokhale and his colleagues exploited an evolutionary quirk in the way Mycobacterium tuberculosis builds the lipid layer that coats its surface. Unlike other organisms, M. tuberculosis displays a suite of complex lipids on its outer membrane. Some scientists have suggested that these long lipid molecules contribute to the bacteria’s ability to maintain long-term infections by confusing the host’s immune system.

Related: Fighting TuberculosisTB Pandemic ThreatExtensively Drug-resistant Tuberculosis (XDR TB)Virtually untreatable TB found

How Antibiotics Kill Bacteria

How Antibiotics Kill Bacteria

Since the first antibiotics reached the pharmacy in the 1940s, researchers discovered that they target various pieces of machinery in bacterial cells, disrupting the bacteria’s ability to build new proteins, DNA, or cell wall. But these effects alone do not cause death, and a complete explanation of what actually kills bacteria after they are exposed to antibiotics has eluded scientists.

The group found that all bactericidal antibiotics, regardless of their initial targets inside bacteria, caused E. coli to produce unstable chemicals called hydroxyl radicals. These compounds react with proteins, DNA, and lipids inside cells, causing widespread damage and rapid death for the bacteria.

With the results of these two experiments, the researchers were able to identify three major processes implicated in gentamicin-induced cell death: protein transport, a stress response triggered by abnormal proteins in the cell membrane, and a metabolic stress response.

Related: How Bleach Kills BacteriaBacteria Survive On All Antibiotic DietSoil Could Shed Light on Antibiotic ResistanceAntibiotics Too Often Prescribed for Sinus Woes

  • Recent Comments:

    • Jack Lawson: Wow! Awesome article and very entertaining story about insects. Animals are awesome! Keep it...
    • Mehmet: I think governments should encourage people for such initiatives.
    • Anonymous: It looks like a bird like a woodpecker. I do not know the name, but I have a perfect creation.
    • David: Very interesting story about the architecture of insects. They create very interesting shapes.
    • Mon Roi: Instead of marketing DVD sets or VHS sets or whatever else they just give it up for free. There is...
    • Gebze Pansiyon: Woww…. what a beautiful bird. I love the picture.
    • Vignesh P: very useful information.thank you for sharing It is so good blog !
    • Dustin McEarchern: Love the use of technology to improve lives. Really great story.
  • Recent Trackbacks:

  • Links