Posts about space

Milky Way May Have 100,000 Times More Nomad Planets Than Stars

There may be 100,000 times more “nomad planets” in the Milky Way than stars, according to a new study by researchers at the Kavli Institute for Particle Astrophysics and Cosmology (KIPAC), a joint institute of Stanford University and the SLAC National Accelerator Laboratory. How amazing is that. Science is so cool. I had no idea this was the case.

If observations confirm the estimate, this new class of celestial objects will affect current theories of planet formation and could change our understanding of the origin and abundance of life.

“If any of these nomad planets are big enough to have a thick atmosphere, they could have trapped enough heat for bacterial life to exist,” said Louis Strigari, leader of the team that reported the result in a paper: Nomads of the Galaxy. Although nomad planets don’t bask in the warmth of a star, they may generate heat through internal radioactive decay and tectonic activity.

Searches over the past two decades have identified more than 500 planets outside our solar system, almost all of which orbit stars. Last year, researchers detected about a dozen nomad planets, using a technique called gravitational microlensing, which looks for stars whose light is momentarily refocused by the gravity of passing planets.

The research produced evidence that roughly two nomads exist for every typical, so-called main-sequence star in our galaxy. The new study estimates that nomads may be up to 50,000 times more common than that.

To arrive at what Strigari himself called “an astronomical number,” the KIPAC team took into account the known gravitational pull of the Milky Way galaxy, the amount of matter available to make such objects and how that matter might divvy itself up into objects ranging from the size of Pluto to larger than Jupiter. Not an easy task, considering no one is quite sure how these bodies form. According to Strigari, some were probably ejected from solar systems, but research indicates that not all of them could have formed in that fashion.

“To paraphrase Dorothy from The Wizard of Oz, if correct, this extrapolation implies that we are not in Kansas anymore, and in fact we never were in Kansas,” said Alan Boss of the Carnegie Institution for Science, author of The Crowded Universe: The Search for Living Planets, who was not involved in the research. “The universe is riddled with unseen planetary-mass objects that we are just now able to detect.”

A good count, especially of the smaller objects, will have to wait for the next generation of big survey telescopes, especially the space-based Wide-Field Infrared Survey Telescope and the ground-based Large Synoptic Survey Telescope, both set to begin operation in the early 2020s.

A confirmation of the estimate could lend credence to another possibility mentioned in the paper ”“ that as nomad planets roam their starry pastures, collisions could scatter their microbial flocks to seed life elsewhere.

Additional authors included KIPAC member Matteo Barnabè and affiliate KIPAC member Philip Marshall of Oxford University. The research was supported by NASA, the National Science Foundation and the Royal Astronomical Society.

Related: full press releaseAstronomers Find a Planet Denser Than LeadHot Ice PlanetNASA”™s Mars Curiosity RoverPlanet, Less Dense Than Cork, Is Discovered

YouTube SpaceLab Experiment Competition

YouTube SpaceLab is an open competition inviting 14 – 18 year olds (anywhere in the world) to create an idea for a science experiment in space. You don’t have to actually do the experiment, you just have to record yourself explaining it.

Entries must have be submitted on YouTube by 07:59 GMT on December 8th.

The winning experiments will be conducted on the International Space Station (ISS) and beamed live on YouTube for the whole planet to see.

Winners get the choice to either watch the rocket blast off with your idea on it in Japan or take a specially tailored astronaut training course in Russia when you turn 18. There are other amazing prizes for the runners-up too.

Here is an example entry from 3 students in UK on an experiment to learn about quorum sensing by bacteria in the micro gravity of space.

Related: Google Science Fair 2011 ProjectsBacteria Communicate Using a Chemical Language (quorum sensing)11 Year Old Using Design of ExperimentsResearch by group of 8 to 10 Year Olds Published in Royal Society Journal

Apply to be an Astronaut

Are you looking to change jobs? NASA is seeking outstanding scientists, engineers (job announcement closed so broken link removed), and other talented professionals to carry forward the great discovery process that its mission demands. Creativity. Ambition. Teamwork. A sense of daring. Curiosity. That’s what it takes to join NASA, one of the best places to work in the Federal Government.

photo of astronaut's faceplate reflecting earth

The National Aeronautics and Space Administration (NASA) has a need for Astronaut Candidates to support the International Space Station Program and future deep space exploration activities.

In 1959 NASA selected its first group of 7 astronaut candidates. Since then 20 additional classes have been selected; bringing the total number of astronaut candidates to 330.

The astronauts of the 21st century will continue to work aboard the International Space Station in cooperation with our international partners; help to build and fly a new NASA vehicle, the Orion Multi-Purpose Crew Vehicle (MPCV) designed for human deep space exploration; and further NASA”™s efforts to partner with industry to provide a commercial capability for space transportation to the space station.

NASA is in the process of identifying possible near-Earth asteroids to explore with the goal of visiting an asteroid in 2025. With that goal, and keeping in mind that the plan is to send a robotic precursor mission to the asteroid approximately five years before humans arrive, NASA will need to select the first set of targets to explore within the next decade.

Requirement include: Applicants for the Astronaut Candidate Program must meet the basic education requirements for NASA engineering and scientific positions, specifically: successful completion of standard professional curriculum in an accredited college or university leading to at least a bachelor’s degree with major study in an appropriate field of engineering, biological science, physical science, or mathematics.

Related: NASA Robotics AcademyNASA’s Mars Curiosity RoverAstronaut Drops a Hammer and Feather on the Moon

Continue reading

Russia Launches Mars Moon Probe

Russians launch Mars moon probe

Russia has launched an audacious bid to scoop up rock and dust samples from the Martian moon Phobos and bring them back to Earth for study.

Moscow has despatched a total of 16 missions to the Red Planet since the 1960s. None has successfully completed its goals, with the most recent endeavour – the sophisticated Mars-96 spacecraft – being destroyed in a failed launch.

Once on the surface, a robotic arm will pick up samples of the regolith (“soil”). Some of this material will be analysed there and then, but a portion of it – about 200g – will be transferred to a canister for return to Earth.

This canister and its departure stage should be sent home within a few days of Phobos-Grunt’s arrival on the moon. All being well, the canister should fall to Earth in the Kazakh desert in August 2014.

Potato-shaped Phobos is a fascinating target. Although it has been studied extensively by passing satellites, it still holds many secrets – not just about itself, but also the planet below.

The mission also is carrying a Chinese satellite that will be launched into orbit around Mars. This mission shows the future of space exploration. The USA continues to reduce the funding for space exploration while countries such as China are greatly increasing their funding.

I expect the leading space exploration will become much more global and the USA will take a less prominent role as the USA decides to spend funds elsewhere instead of scientific missions in space. Politicians in the USA have also stopped NASA from collaborating internationally which further reduces the USA role in the future of scientific research in space.

Russia seems to be making a new push to invest in space after a period of reduced funding. Russia’s economy still has many weaknesses, but in the last decade the oil wealth has provided some wealth and Russia is interested in using some of those funds for space exploration.

Update: This attempt failed also, making Russia 0 for 17 on Mars attempts. In the last few years Russia has shown a renewed interest in investing in space exploration. But their struggles show that it isn’t easy to in effect restart a program. Space exploration requires a great deal of very complex work. I hope they can get back on track and efforts in other countries also do well: China, Japan…

Related: NASA”™s Mars Curiosity RoverMagnetic Portals Connect Sun and EarthGreat Astronaut Self Portrait

Is Dark Matter an Illusion?

Open access letter asks – Is dark matter an illusion created by the gravitational polarization of the quantum vaccum? by Dragan Slavkov Hajdukovic, CERN

Assuming that a particle and its antiparticle have the gravitational charge of the opposite sign, the physical vacuum may be considered as a fluid of virtual gravitational dipoles. Following this hypothesis, we present the first indications that dark matter may not exist and that the phenomena for which it was invoked might be explained by the gravitational polarization of the quantum vacuum by the known baryonic matter.

Let us start with a major unresolved problem. The measured galaxy rotation curves remain roughly constant at large radii. Faster than expected orbits, require a larger central force, which, in the framework of our theory of gravity, cannot be explained by the existing baryonic matter. The analogous problem persists also at the scale of clusters of galaxies.

The favoured solution is to assume that our current theory of gravity is correct, but every galaxy resides in a halo of dark matter made of unknown non-baryonic particles (for a brief review on dark matter see for instance: Einasto, 2010). A full list of the proposed dark matter particles would be longer than this letter; let us mention only weekly interacting massive particles and axions. In spite of the significant efforts dark particles have never been detected…

The scientific inquiry process continues to be used to try and explain the evidence we gather. Unsettled areas of science show how difficult the discovery process is. Once we have settled on theories it is so easy to explain why basic truths of evolution, geology, chemistry… result in what the evidence shows. But getting to the scientific consensus is a challenging process.


Dark Matter Is an Illusion, New Antigravity Theory Says

Physicist David Evans called the new study a “very interesting theoretical exercise,” but he said he isn’t ready to abandon dark matter just yet. “The evidence for dark matter is now very compelling,” said Evans, of the University of Birmingham, who leads the U.K. team for the ALICE detector at CERN’s Large Hadron Collider.

For example, in 2006 astronomers unveiled a photo of two colliding galaxies known as the Bullet cluster that purportedly showed the separation of matter from dark matter. A similar effect was observed in the Pandora cluster earlier this summer, said Evans, who was not involved in the study.

Hajdukovic said he is currently expanding his theory to account for these observations. His preliminary calculations, he said, suggest that “what is observed in the Bullet cluster and more recently at the Pandora cluster may be understood in the framework of the gravitational polarization of the quantum vacuum.”

CERN physicist Michael Doser agreed that Hajdukovic’s ideas are “unorthodox” but did not immediately dismiss the new theory…
“In a few years,” Doser said, “we should definitely be in a position to confirm or refute [Hajdukovic’s] hypothesis.”

Related: The Mystery of Empty SpaceWhy do we Need Dark Energy to Explain the Observable Universe?Dark Matter Experiment ResultsLooking for Signs of Dark Matter Over Antarctica

NASA’s Mars Curiosity Rover

Curiosity is the name of the new rover from NASA. It will be launched to continue the exploration of Mars so successfully done by Spirit and Opportunity (2 previous Mars rovers that did some amazing work and laster years longer than expected). The rover is NASA’s Mars Science Laboratory, a mobile robot for investigating Mars’ past or present ability to sustain microbial life.

photo of NASA's Mars Rover: Curiosity

Once on the surface, the rover will be able to roll over obstacles up to 75 centimeters (29 inches) high and travel up to 90 meters per hour. On average, the rover is expected to travel about 30 meters per hour, based on power levels, slippage, steepness of the terrain, visibility, and other variables.

The rover is about the size of a small SUV — 10 feet long (not including the arm), 9 feet wide and 7 feet tall. It weighs 900 kilograms (2,000 pounds)

The rover will carry a radioisotope power system that generates electricity from the heat of plutonium’s radioactive decay. This power source gives the mission an operating lifespan on Mars’ surface of a full martian year (687 Earth days) or more, while also providing significantly greater mobility and operational flexibility, enhanced science payload capability, and exploration of a much larger range of latitudes and altitudes than was possible on previous missions to Mars.

Related: Mars Rover Continues ExplorationMars Rovers Getting Ready for Another Adventure (2007)Sunset on Mars

More Dark Matter Experiment Results

A dark-matter experiment deep in the Soudan mine of Minnesota now has detected a seasonal signal variation similar to one an Italian experiment has been reporting for more than a decade.

The new seasonal variation, recorded by the Coherent Germanium Neutrino Technology (CoGeNT) experiment, is exactly what theoreticians had predicted if dark matter turned out to be what physicists call Weakly Interacting Massive Particles (WIMPs).

“We cannot call this a WIMP signal. It”™s just what you might expect from it,” said Juan Collar, associate professor in physics at the University of Chicago. Collar and John Orrell of Pacific Northwest National Laboratory, who lead the CoGeNT collaboration, are submitting their results in two papers to Physical Review Letters.

WIMPS might have caused the signal variation, but it also might be a random fluctuation, a false reading sparked by the experimental apparatus itself or even some exotic new phenomenon in atomic physics, Collar said.

Dark matter accounts for nearly 90 percent of all matter in the universe, yet its identity remains one of the biggest mysteries of modern science. Although dark matter is invisible to telescopes, astronomers know it is there from the gravitational influence it exerts over galaxies.

Theorists had predicted that dark matter experiments would detect an annual modulation because of the relative motion of the Earth and sun with respect to the plane of the Milky Way galaxy.
Continue reading

5% of the Universe is Normal Matter, What About the Other 95%?

Dark Matters from PHD Comics on Vimeo.

Great discussion and illustration of the state of our understanding of physics, matter, dark matter and the rest of the stuff our universe has from PhD comics. What is the universe made of? 5% of it is normal matter (the stardust we are made of), 20% dark matter and the other 75% – we have no idea!

Dark Cosmos is a nice book on some of these ideas. It is 5 years old so missing some of the latest discoveries.

Related: Why do we Need Dark Energy to Explain the Observable Universe?The Mystery of Empty SpaceFriday Fun, CERN Version
Continue reading

Amazing Webcast of the Aurora Borealis

The Aurora from Terje Sorgjerd on Vimeo.

Norwegian landscape photographer Terje Sorgjerd spent a week capturing one of the biggest aurora borealis shows in recent years. He shot the video in and around Kirkenes and Pas National Park bordering Russia at temperatures around -25 Celsius.

Aurora are caused by the collision of charged particles and the Earth’s magnetic field. Aurora Borealis is Latin for northern lights. An aurora is usually observed at night and typically occurs in the ionosphere. The lights are commonly visible between 60 and 72 degrees north and south latitudes, which place them in a ring just within the Arctic and Antarctic polar circles.

Auroras result from emissions of photons in the Earth’s upper atmosphere, above 80 km (50 miles), from ionized nitrogen atoms regaining an electron, and oxygen and nitrogen atoms returning from an excited state to ground state. They are ionized or excited by the collision of solar wind particles being funneled down and accelerated along the Earth’s magnetic field lines; excitation energy is lost by the emission of a photon of light, or by collision with another atom or molecule. Oxygen emissions give off a green or reddish hue, depending on the amount of energy. Nitrogen emissions give off a blue (if the atom regains and electron after it has been ionized) or red hue (if returning to the ground state from an excited state).

Auroras are associated with the solar wind, a flow of ions continuously flowing outward from the Sun. The Earth’s magnetic field traps these particles, many of which travel toward the poles where they are accelerated toward Earth. Collisions between these ions and atmospheric atoms and molecules cause energy releases in the form of auroras appearing in large circles around the poles. Auroras are more frequent and brighter during the intense phase of the solar cycle when coronal mass ejections increase the intensity of the solar wind.

Related: Magnetic MovieSolar EruptionMagnetic Portals Connect Sun and EarthThe Mystery of Empty SpaceLooking for Signs of Dark Matter Over Antarctica

NASA to Launch GM Co-Developed Robot to International Space Station

photo of humanoid GM NASA roblot

NASA will launch the first human-like robot to space later this year to become a permanent resident of the International Space Station. Robonaut 2, or R2, was developed jointly by NASA and General Motors under a cooperative agreement to develop a robotic assistant that can work alongside humans, whether they be astronauts in space or workers at GM manufacturing plants on Earth.

The 300-pound R2 consists of a head and a torso with two arms and two hands and will launch on space shuttle Discovery as part of the STS-133 mission planned for September. Once aboard the station, engineers will monitor how the robot operates in weightlessness. R2 joins another station robot, known as Dextre. That robot, built by the Canadian Space Agency, consists of two, long arms to perform tasks that normally require spacewalking astronauts to complete.

While Dextre is located on the station’s exterior, R2 will be confined to operations in the station’s Destiny laboratory. However, future enhancements could allow it to move more freely around the station’s interior, and it could one day be modified to operate outside the complex.

“The use of R2 on the space station is just the beginning of a quickening pace between human and robotic exploration of space,” said John Olson, director of NASA’s Exploration Systems Integration Office. “The partnership of humans and robots will be critical to opening up the solar system and will allow us to go farther and achieve more than we can probably even imagine today.”

The dexterous humanoid robot not only looks like a human, it is designed to work like one. With human-like hands and arms, R2 is able to use the same tools that station crew members use. In the future, the greatest benefit of humanoid robots in space may be as an assistant or stand-in for astronauts during spacewalks or for tasks too difficult or dangerous for humans. For now, R2 is still a prototype and lacks adequate protection needed to exist outside the space station in the extreme temperatures of space.

Related: Awesome Robot: uBot-5RoboCup German Open 2008Toyota Develops Thought-controlled WheelchairThe Robotic Dog

Why Wasn’t the Earth Covered in Ice 4 Billion Years Ago – When the Sun was Dimmer

Climate scientists from all over the globe are now able to test their climate models under extreme conditions thanks to Professor Minik Rosing, University of Copenhagen. Rosing has solved one of the great mysteries and paradoxes of our geological past, namely, “Why the earth’s surface was not just one big lump of ice four billion years ago when the Sun’s radiation was much weaker than it is today.” Until now, scientists have presumed that the earth’s atmosphere back then consisted of 30% carbon dioxide (CO2) which ensconced the planet in a protective membrane, thereby trapping heat like a greenhouse.

The faint early sun paradox
In 1972, the late, world famous astronomer Carl Sagan and his colleague George Mullen formulated “The faint early sun paradox. ” The paradox consisted in that the earth’s climate has been fairly constant during almost four of the four and a half billion years that the planet has been in existence, and this despite the fact that radiation from the sun has increased by 25-30 percent.

The paradoxical question that arose for scientists in this connection was why the earth’s surface at its fragile beginning was not covered by ice, seeing that the sun’s rays were much fainter than they are today. Science found one probable answer in 1993, which was proffered by the American atmospheric scientist, Jim Kasting. He performed theoretical calculations that showed that 30% of the earth’s atmosphere four billion years ago consisted of CO2. This in turn entailed that the large amount of greenhouse gases layered themselves as a protective greenhouse around the planet, thereby preventing the oceans from freezing over.

Mystery solved
Now, however, Professor Minik Rosing, from the Natural History Museum of Denmark, and Christian Bjerrum, from the Department of Geography and Geology at University of Copenhagen, together with American colleagues from Stanford University in California have discovered the reason for “the missing ice age” back then, thereby solving the sun paradox, which has haunted scientific circles for more than forty years.

Professor Minik Rosing explains, “What prevented an ice age back then was not high CO2 concentration in the atmosphere, but the fact that the cloud layer was much thinner than it is today. In addition to this, the earth’s surface was covered by water. This meant that the sun’s rays could warm the oceans unobstructed, which in turn could layer the heat, thereby preventing the earth’s watery surface from freezing into ice. The reason for the lack of clouds back in earth’s childhood can be explained by the process by which clouds form. This process requires chemical substances that are produced by algae and plants, which did not exist at the time. These chemical processes would have been able to form a dense layer of clouds, which in turn would have reflected the sun’s rays, throwing them back into the cosmos and thereby preventing the warming of earth’s oceans. Scientists have formerly used the relationship between the radiation from the sun and earth’s surface temperature to calculate that earth ought to have been in a deep freeze during three billion of its four and a half billion years of existence. Sagan and Mullen brought attention to the paradox between these theoretical calculations and geological reality by the fact that the oceans had not frozen. This paradox of having a faint sun and ice-free oceans has now been solved.”

CO2 history iluminated
Minik Rosing and his team have by analyzing samples of 3.8-billion-year-old mountain rock from the world’s oldest bedrock, Isua, in western Greenland, solved the “paradox”.

But more importantly, the analyses also provided a finding for a highly important issue in today’s climate research – and climate debate, not least: whether the atmosphere’s CO2 concentration throughout earth’s history has fluctuated strongly or been fairly stable over the course of billions of years.

“The analyses of the CO2-content in the atmosphere, which can be deduced from the age-old Isua rock, show that the atmosphere at the time contained a maximum of one part per thousand of this greenhouse gas. This was three to four times more than the atmosphere’s CO2-content today. However, not anywhere in the range of the of the 30 percent share in early earth history, which has hitherto been the theoretical calculation. Hence we may conclude that the atmosphere’s CO2-content has not changed substantially through the billions of years of earth’s geological history. However, today the graph is turning upward. Not least due to the emissions from fossil fuels used by humans. Therefore it is vital to determine the geological and atmospheric premises for the prehistoric past in order to understand the present, not to mention the future, in what pertains to the design of climate models and calculations,” underscores Minik Rosing.

Full press release from the University of Copenhagen in Denmark.

Related: Sun Missing It’s SpotsSolar StormsWhy is it Colder at Higher Elevations?Magnetic Portals Connect Sun and Earth

  • Recent Comments:

    • Richard Hopp: Awesome blog post, love the biodiversity. Really excited after watching this video, since I...
    • Robbie Miller: How fantastic, not only a great subject to study, but to be able to travel the world too....
    • Jaspal Singh: Japan has an edge when it comes to humanoid robots. No doubt in few more year, you will find...
    • Marcus Williams: This is actually a marvelous piece of engineering. Kudos for sharing!
    • M Zeeshan Haider: You are so interesting! I don’t believe I’ve truly read through anything like...
    • Jaspal Singh: I fully agree to the post idea. The farming is a natural process and should be free from any...
    • Touseef Ahmed: What a best creative idea I think you blong to india.
    • courier: I like the trailer 🙂
  • Recent Trackbacks:

  • Links