Posts about high school students

Intel International Science and Engineering Fair 2015

Raymond Wang, 17, of Canada was awarded first place for engineering a new air inlet system for airplane cabins to improve air quality and curb disease transmission at this year’s Intel International Science and Engineering Fair.

Wang’s system improves the availability of fresh air in the cabin by more than 190% while reducing pathogen inhalation concentrations by up to 55 times compared to conventional designs, and can be easily and economically incorporated in existing airplanes. Wang received the Gordon E. Moore Award of US$75,000. The system uses vents to create a “bubble” around passengers that deflects incoming air.

Nicole Ticea, 16, of Canada received one of two Intel Foundation Young Scientist Awards of US$50,000 for developing an inexpensive, easy-to-use testing device to combat the high rate of undiagnosed HIV infection in low-income communities. Her disposable, electricity-free device provides results in an hour and should cost less than US$5 to produce. Ticea has already founded her own company, which recently received a US$100,000 grant to continue developing her technology.

Karan Jerath, 18, of Friendswood, Texas, received the other Intel Foundation Young Scientist Award of US$50,000 for refining and testing a novel device that should allow an undersea oil well to rapidly and safely recover following a blowout. Jerath developed a better containment enclosure that separates the natural gas, oil and ocean water; accommodates different water depths, pipe sizes and fluid compositions; and can prevent the formation of potentially clogging methane hydrate.

This year’s Intel International Science and Engineering Fair featured approximately 1,700 young scientists selected from 422 affiliate fairs in more than 75 countries, regions and territories.

Related: Intel Science Talent Search 2012 AwardeesGreat Projects From First Google Science Fair Finalists (2011)2008 Intel Science Talent SearchHigh School Student Creates: Test That is Much More Accurate and 26,000 Times Cheaper Than Existing Pancreatic Cancer Tests

Learn About Biology Online

Very cool site for learning about biology. I have tried the courses offered by Coursera but they are too structured for my taste. I want to be able to learn at my pace and dip into the areas I find interesting. Coursera is more like a real course, that has weekly assignments and the like.

Survivebio is a resources that matches my desires exactly. You can go and learn about whatever topics you desire, when you desire. The site offers webcasts, games, flashcards, chapter outlines, practice tests and a forum to discuss the ideas.

In this webcast, Paul Andersen discusses the specifics of phylogenetics. The evolutionary relationships of organisms are discovered through both morphological and molecular data.

The aim of the SurviveBio web site is to aid AP (and college) biology students. But it is also a great resource to learn about biology if you are interested in that topic. Hopefully they will add more webcasts. The site uses webcasts from Bozeman Science which has a huge number of very good videos on biology and also, chemistry, physics, earth science, statistics, anatomy and physiology.

Related: Great Webcast Explaining the Digestive SystemsCell Aging and Limits Due to TelomeresHuman Gene Origins: 37% Bacterial, 35% Animal, 28% Eukaryotic

Good Chemistry: A Love Song for Ionic Bonds

Song and video by 10th grade student, Eli Cirino, for extra credit in his chemistry class.

An ionic bond is a type of chemical bond formed through an electrostatic attraction between two oppositely charged ions. Ionic bonds are formed between a cation, which is usually a metal, and an anion, which is usually a nonmetal.

An ionic bond is considered a bond where the ionic character is greater than the covalent character (ionic bonds cannot exist on their own, they must have a covalent bond present also).

Related: Protein Synthesis: 1971 VideoCooking with Chemistry: Hard CandyThe Chemistry of Hair Coloring

Teen Solves Puzzle That Has Stumped Mathematicians for 300 Years

Teen solves Newton’s 300-year-old riddle

An Indian-born teenager has won a research award for solving a mathematical problem first posed by Sir Isaac Newton more than 300 years ago that has baffled mathematicians ever since.

The solution devised by Shouryya Ray, 16, makes it possible to calculate exactly the path of a projectile under gravity and subject to air resistance. Shouryya, who lives in Dresden, eastern Germany, came up with the solutions to this and a second mathematical riddle while working on a school project.

Only partial solutions had been discovered up to now, requiring simplified assumptions or calculations by computer. Shouryya’s elegant solutions could contribute to greater precision in fields such as ballistics.

Related: Teen Tackles Centuries-old Numbers challenge (this time it was an Iraqi immigrant in Sweden)Numeracy: The Educational Gift That Keeps on GivingOur Brains Reorganize As We Learn Math

YouTube SpaceLab Experiment Competition

YouTube SpaceLab is an open competition inviting 14 – 18 year olds (anywhere in the world) to create an idea for a science experiment in space. You don’t have to actually do the experiment, you just have to record yourself explaining it.

Entries must have be submitted on YouTube by 07:59 GMT on December 8th.

The winning experiments will be conducted on the International Space Station (ISS) and beamed live on YouTube for the whole planet to see.

Winners get the choice to either watch the rocket blast off with your idea on it in Japan or take a specially tailored astronaut training course in Russia when you turn 18. There are other amazing prizes for the runners-up too.

Here is an example entry from 3 students in UK on an experiment to learn about quorum sensing by bacteria in the micro gravity of space.

Related: Google Science Fair 2011 ProjectsBacteria Communicate Using a Chemical Language (quorum sensing)11 Year Old Using Design of ExperimentsResearch by group of 8 to 10 Year Olds Published in Royal Society Journal

MIT Engineering Design Workshop for Boston High School Students

This summer, a few dozen Boston-area high school students chose to spend their mornings toiling away with a variety of materials to create working marvels of engineering in the Engineering Design Workshop, a month-long program that gives teenagers a hands-on experience with the joys and challenges of engineering.

None of the activities are prescribed; instead, students take part in brainstorming sessions on the first day, and things develop from there. Typically, the “counselors” — a mix of undergraduate and graduate students from MIT and other local universities — present a few ideas, and the high school students decide which projects they’d most like to work on. I really like the idea of involving the college students.

This year, the 22 students divided themselves into five projects: a modified Razor scooter, equipped with a motor and brakes; a sound system of giant tower speakers; remote-controlled “anything” (which ended up including cars, fish, birds and even a flying turtle); a mosaic tiger meticulously assembled from pieces of stained glass; and an electric cello.

Each student is allotted $100 to spend on materials for his or her group’s project; this way, projects that attract more students have a larger budget to work with. Counselors help them purchase supplies online and work with them on the construction from the ground up.

There are probably thousands of similar type activities throughout the year to help engage students in engineering. I think it is great, but we need to do more. We need to let young students know what they are missing. If people know the wonders of engineering and choose something else for their career path, that is fine. It is a shame when people don’t get to decide, because they never experience what engineering has to offer.

Read the full press release.

Related: Infinity Project: Engineering Education for Today’s ClassroomRutgers Initiative to Help Disadvantaged ChildrenInspirational EngineerWhat Kids can Learn on Their Own

Great Projects From First Google Science Fair Finalists

15 finalists (from 3 different age groups – 13-14 years old, 15-16 and 17-18) were selected. 11 finalists were from the USA and 1 each from Singapore, Canada, India and South Africa. These examples of what can be done with imagination, effort and a scientific mindset is great.

The grand prize winner, Shree Boseer’s project:

Each year, over 21,000 women are diagnosed with ovariancancer – the 5th leading cause of cancer-related deaths in women in the United States. One of the most common drugs usedin ovarian cancer chemotherapy is cisplatin, a platinum-based chemotherapy treatment. While the drug affects ordinary cells, the significantly higher replication frequency of cancer cells causes cisplatin to have a greater impact in malignant cells. However, cancer cells often develop resistance to cisplatin, rendering the treatment ineffective. To improve the efficiency of cisplatin treatment, this research sought to determine whether AMP kinase, an energy protein of cell, plays a role in the development of cisplatin resistance. Studies with various techniques showed a significant difference on cell death caused by cisplatin insensitive and resistant ovarian cancer cells when AMPK was inhibited,suggesting that AMPK plays a role in the development of resistance. This work,in addition to offering a new treatment regime, also furthers our understanding of ovarian cancer and cancers in general.

This is a great project and the experience for the students is wonderful. Still I do think the prizes should be much larger given all the large corporations involved. Get involved with the next Google Science fair.

Google Science Fair 2011 Projects semi finalistsIntel Science and Engineering Fair 2009 WebcastsHats off to the winners of the inaugural Google Science FairPresident Obama Speaks on Getting Students Excited About Science and Engineering
Continue reading

Teen Tackles Centuries-old Numbers challenge

teen tackles centuries-old numbers challenge

A 16-year-old Iraqi immigrant in central Sweden has single-handedly figured out a formula with Bernoulli numbers that is normally reserved for much more seasoned mathematicians, earning him praise from professors at prestigious Uppsala University.

While it’s not the first time that someone has shown such Bernoulli number relationships, it’s highly unusual for a first year high school student to make his way through the complicated calculations, according to Uppsala University senior maths lecturer Lars-Åke Lindahl. “He’s a very clever guy,” Lindahl told The Local.

“What he did isn’t necessarily new, but it is quite remarkable for a first year high school student to take on these types of problems all on his own. It’s certainly an achievement.”

Altoumaimi plans to continue studying advanced math and physics over the summer. “I wanted to be a researcher in physics or mathematics; I really like those subjects. But I have to get better at English and social science,” he told Falu-Kuriren.

Related: Making Magnificent Mirrors with MathPlaying Dice and Children’s Numeracy1=2: A Proof

Intel Science and Engineering Fair 2009 Webcasts

Tara Adiseshan, 14, of Charlottesville, Virginia; Li Boynton, 17, of Houston; and Olivia Schwob, 16, of Boston were selected from 1,563 young scientists from 56 countries, regions and territories for their commitment to innovation and science. Each received a $50,000 scholarship from the Intel Foundation.

In the webcast, Tara Adiseshan, talks about her project studying the evolutionary ties between nematodes (parasites) and sweat bees. She identified and classified the evolutionary relationships between sweat bees and the nematodes (microscopic worms) that live inside them. Tara was able to prove that because the two have such ecologically intimate relationships, they also have an evolutionary relationship. That is to say, if one species evolves, the other will follow.

Li Boynton developed a biosensor from bioluminescent bacteria (a living organism that gives off light) to detect the presence of contaminants in public water. Li’s biosensor is cheaper and easier to use than current biosensors, and she hopes it can be used in developing countries to reduce water toxicity.

Olivia Schwob isolated a gene that can be used to improve the intelligence of a worm. The results could help us better understand how humans learn and even prevent, treat and cure mental disabilities in the future.

In addition to the three $50,000 top winners, more than 500 Intel International Science and Engineering Fair participants received scholarships and prizes for their groundbreaking work. Intel awards included 19 “Best of Category” winners who each received a $5,000 Intel scholarship and a new laptop. In total, nearly $4 million is scholarships and awards were provided.

Related: Intel ISEF 2009 Final GalaGirls Sweep Top Honors at Siemens Competition in Math, Science and TechnologyIntel International Science and Engineering Fair 2007Worldwide Science Wizkids at Intel ISEF2008 Intel Science Talent Search
Continue reading

Teen Goalie Designs Camouflage Pads

Teen goalie designs pads to trick shots

Leahy sketched out new leg pads that blend into the goal netting behind him. He wanted pads, a trapper, and a blocker that are white with a raised double-stitched design, just like the goal. He applied for a design patent and had them custom-made by a Canada-based pad maker.

“When the shooter comes down and only has a split second to shoot the puck, they’re looking for net,” said Leahy, a senior from Hampton, N.H., who grew up in Byfield. “If you put the net on the pad, they’ll shoot at the pad instead of the goal.”

Exactly what will happen to the pads after this season is unclear. Leahy said he would like to play hockey in college, probably at the club level, and wants to market the idea. “It would definitely be cool to get it out there and get other guys in the future wearing it,” he said.

Related: The Glove – Engineering CoolnessEngineering Basketball FlopScience of the High Jump

Yellowstone Youth Conservation Corps

Externs.com, another curiouscat.com site, provides links to hundreds of internship opportunities. We highlight some science and engineering internships and plenty of other options too. Visit the internship directory site to find options like the Yellowstone Youth Conservation Corps. The YCC was established to accomplish needed conservation work on public lands and to develop an understanding and appreciation of participating youth in our nation’s natural, historical, and cultural heritage.

The Yellowstone YCC is a program that emphasizes work ethics, environmental awareness and recreational activities. Approximately 30 students are selected each summer from across the country and are expected to complete forty hours of work each week.

In the past, YCC enrollees have been instrumental in building backcountry bridges; trail construction and maintenance; log cabin restoration; painting; and working on a wide variety of resource management, maintenance, and research projects. Many of the projects take place in remote locations within Yellowstone and work crews may be camped out for up to ten days.

Along with the work projects, enrollees spend significant time participating in YCC environmental education and recreation programs. Many of these activities are scheduled in the evenings and on weekends. They include hiking, rafting, fishing, backpacking, ranger led programs, guest speakers, enrollee and staff presentations, and trips throughout the Greater Yellowstone Ecosystem.

To be selected you must be at least 15 and not turn 19 before the term ends in mid August.

via: Send Your Kid to Yellowstone National Park This Summer

Related: Swarm of Yellowstone Quakes Baffles Scientistsposts on internshipsLight-harvesting Bacterium Discovered in YellowstoneWho Should Profit from Yellowstone’s Microbes

  • Recent Comments:

    • Dạy kèm tiếng anh tại nhà: If this robot appeared in Vietnam then it is great, freeing labor for farmers....
    • Miner: Incredible. I missed this when this discovery was made. Proff that we have only identified a small...
    • Linda Peters: If you just pay attention to the science and make wise decisions with an understanding of...
    • mike garner: There are many reasons why they get damaged. Fishing activities is a big one. Cables get...
    • mike garner: The level of maintenance to keep an ROV or AUV running is considerable. Multiply that by the...
    • mike garner: I’ve worked on cable repair ships. Cables are damaged all of the time. I remember...
    • Jack Lawson: Wow! Awesome article and very entertaining story about insects. Animals are awesome! Keep it...
    • Mehmet: I think governments should encourage people for such initiatives.
  • Recent Trackbacks:

  • Links