Posts about bioengineering

Unexpected Risks Found In Editing Genes To Prevent Inherited Disorders

Mitochondrial replacement seeks to remove genes known to cause genetic defects from embryos in order to allow for a baby to avoid inheriting the defect.

Mitochondrial Replacement Techniques: Ethical, Social, and Policy Considerations from the USA National Academy of Sciences

Accordingly, the committee recommends that any initial MRT clinical investigations focus on minimizing the future child’s exposure to risk while ascertaining the safety and efficacy of the techniques. The recommended restrictions and conditions for initial clinical investigations include

  • limiting clinical investigations to women who are otherwise at risk of transmitting a serious mtDNA disease, where the mutation’s pathogenicity is undisputed, and the clinical presentation of the disease is predicted to be severe, as characterized by early mortality or substantial impairment of basic function; and
  • transferring only male embryos for gestation to avoid introducing heritable genetic modification during initial clinical investigations.

Following successful initial investigations of MRT in males, the committee recommends that FDA could consider extending MRT research to include the transfer of female embryos if clear evidence of safety and efficacy from male cohorts, using identical MRT procedures, were available, regardless of how long it took to collect this evidence; preclinical research in animals had shown evidence of intergenerational safety and efficacy; and FDA’s decisions were consistent with the outcomes of public and scientific deliberations to establish a shared framework concerning the acceptability of and moral limits on heritable genetic modification.

The research in this area is interesting and our ability to help achieve healthy lives continues to grow. The path to a bright future though is not without risk. It requires careful action to pursue breakthrough improvements while minimizing the risks we take to achieve better lives for us all.

Unexpected Risks Found In Editing Genes To Prevent Inherited Disorders

Earlier this month, a study published in Nature by Shoukhrat Mitalipov, head of the Center for Embryonic Cell and Gene Therapy at the Oregon Health and Science University in Portland, suggested that in roughly 15 percent of cases, the mitochondrial replacement could fail and allow fatal defects to return, or even increase a child’s vulnerability to new ailments.

The findings confirmed the suspicions of many researchers, and the conclusions drawn by Mitalipov and his team were unequivocal: The potential for conflicts between transplanted and original mitochondrial genomes is real, and more sophisticated matching of donor and recipient eggs — pairing mothers whose mitochondria share genetic similarities, for example — is needed to avoid potential tragedies.

“This study shows the potential as well as the risks of gene therapy in the germline,” Mitalipov says. This is especially true of mitochondria, because its genomes are so different than the genomes in the nucleus of cells. Slight variations between mitochondrial genomes, he adds, “turn out to matter a great deal.”

Related: Gene Duplication and EvolutionThe Challenge of Protecting Us from Evolving Bacterial ThreatsOne Species’ Genome Discovered Inside Another’s (2007)Looking Inside Living Cells

Engineering Mosquitos to Prevent the Transmission of Diseases

Mosquitos are responsible for huge amount of suffering and death. In 2015 200,000,000 people were infected with malaria and 500,000 died.

It is amazing what knowledge science has provided about the causes of human disease. It is great to have videos like this available that let us learn a bit about it from a short and understandable video.

Using our scientific knowledge to design and implement solutions offers great possibilities. But we also have to worry about the risks of such attempts. Making decisions about what risks to take requires well informed people that are able to understand the opportunities and risks and make intelligent decisions.

Related: Video showing malaria breaking into cellScientists Building a Safer Mosquito (2006)Engineering Mosquitoes to be Flying Vaccinators (2010)

Using Diatom Algae to Deliver Chemotherapy Drugs Directly to Cancer Cells

I am thankful for scientists doing the time consuming and important research to find new ways to fight disease. Here is an interesting webcast discussing how chemotherapy is used to fight cancer and how scientists are looking to algae to deliver the chemotherapy drugs to better target cancer cells (while not savaging our health cells).

I am also thankful to the funding sources that pay for this research (and for cool explanations of science, like SciShow).

Read more about the genetically engineered algae kills 90% of cancer cells without harming healthy ones. The algae are a diatom and many diatoms look very cool.

Sadly the actual research paper (by government funded university professors) is published by a closed science publisher (when are we finally going to stop this practice that was outdated over a decade ago?). Thankfully those responsible for SciShow are much more interested in promoting science than maintaining outdated business models (in direct contrast to so many science journal publishers).

Related post on cool delivery methods for life saving drugs: Using Bacteria to Carry Nanoparticles Into CellsSelf-Assembling Cubes Could Deliver Medicine (2006)Nanoparticles With Scorpion Venom Slow Cancer SpreadNASA Biocapsules Deliver Medical Interventions Based Upon What They Detect in the Body

Synthetic Biologists Design a Gene that Forces Cancer Cells to Commit Suicide

Killing a cancer cell from the inside out

To create their tumor-killing program, the researchers designed a logic circuit — a system that makes a decision based on multiple inputs. In this case, the circuit is made of genes that detect molecules specific to a type of cervical cancer cell. If the right molecules are present, the genes initiate production of a protein that stimulates apoptosis, or programmed cell death. If not, nothing happens.

Because the genes used to create the circuits can be easily swapped in and out, this approach could also yield new treatments or diagnostics for many other diseases, according to Ron Weiss, an MIT associate professor of biological engineering and one of the leaders of the research team. “This is a general technology for disease-state detection,” he says.

the researchers created a synthetic gene for a protein, called hBax, that promotes cell death. They designed the gene with two separate safeguards against the killing of healthy, non-HeLa cells: It can be turned off by high levels of microRNAs that are ordinarily low in HeLa, and can also be deactivated by low levels of microRNAs that are normally plentiful in HeLa. A single discrepancy from the target microRNA profile is enough to shut off production of the cell-death protein.

If all microRNA levels match up with the HeLa profile, the protein is produced and the cell dies. In any other cell, the protein never gets made, and the synthetic genes eventually break down.

More very cool research. It is exciting to see how much can be done when we invest in science and engineering research. Of course the path from initial research to implemented solutions is long and complex and often fails to deliver on the initial hopes. But some remarkable breakthroughs achieve spectacular results that we benefit from every day.

Related: Cancer VaccinesResearchers Find Switch That Allows Cancer Cells to SpreadGlobal Cancer Deaths to Double by 2030Cloned Immune Cells Clear Patient’s Cancer

Norman E. Borlaug 1914-2009

The Father Of the Green Revolution

Norman E. Borlaug, 95, an American plant pathologist who won the Nobel Peace Prize in 1970 for starting the “Green Revolution” that dramatically increased food production in developing nations and saved countless people from starvation, died Saturday at his home in Dallas.

“More than any other single person of this age, he has helped provide bread for a hungry world,” the Nobel committee said in honoring him. “Dr. Borlaug has introduced a dynamic factor into our assessment of the future and its potential.”

In his lecture accepting the Nobel Prize, he said an adequate supply of food is “the first component of social justice. . . . Otherwise there will be no peace.”

In 1977, Dr. Borlaug received the Medal of Freedom, the highest civilian honor of the U.S. government.

Billions Served: Norman Borlaug interviewed by Ronald Bailey

As a matter of fact, Mother Nature has crossed species barriers, and sometimes nature crosses barriers between genera–that is, between unrelated groups of species. Take the case of wheat. It is the result of a natural cross made by Mother Nature long before there was scientific man. Today’s modern red wheat variety is made up of three groups of seven chromosomes, and each of those three groups of seven chromosomes came from a different wild grass. First, Mother Nature crossed two of the grasses, and this cross became the durum wheats, which were the commercial grains of the first civilizations spanning from Sumeria until well into the Roman period. Then Mother Nature crossed that 14-chromosome durum wheat with another wild wheat grass to create what was essentially modern wheat at the time of the Roman Empire.

Durum wheat was OK for making flat Arab bread, but it didn’t have elastic gluten. The thing that makes modern wheat different from all of the other cereals is that it has two proteins that give it the doughy quality when it’s mixed with water. Durum wheats don’t have gluten, and that’s why we use them to make spaghetti today. The second cross of durum wheat with the other wild wheat produced a wheat whose dough could be fermented with yeast to produce a big loaf. So modern bread wheat is the result of crossing three species barriers, a kind of natural genetic engineering.

I see no difference between the varieties carrying a BT gene or a herbicide resistance gene, or other genes that will come to be incorporated, and the varieties created by conventional plant breeding. I think the activists have blown the health risks of biotech all out of proportion.

the data that’s put out by the World Health Organization and [the U.N.’s Food and Agriculture Organization], there are probably 800 million people who are undernourished in the world. So there’s still a lot of work to do.

I am a bit more cautious about supporting genetic engineering in our food supply but I agree with him that we need to remain focused on the lives of hundreds of millions of hungry people (which is far too often ignored). I am worried about the risks to the environment and human health. I am also worried about the concentration of food plants in a greatly reduced genetic varieties that are more productive in general but increase the risks of massive food failures (due to limited genetic varieties).

Related: 20 Scientists Who Have Helped Shape Our World2004 Medal of Science WinnersForgotten Benefactor of HumanityFive Scientists Who Made the Modern WorldWheat Rust ResearchNorman Borlaug and Wheat Stem Rust

Tiny Machine Commands a Swarm of Bacteria

Tiny Machine Commands a Swarm of Bacteria

Researchers in Canada have created a solar-powered micro-machine that is no bigger than the period at the end of this sentence. The tiny machine can carry out basic sensing tasks and can indirectly control the movement of a swarm of bacteria in the same Petri dish.

Sylvain Martel, Director of the NanoRobotics Laboratory at the École Polytechnique de Montréal, previously showed a way to control bacteria attached to microbeads using an MRI machine. His new micro-machine, which measure 300×300 microns and carry tiny solar panels, will be presented this week at ICRA ’09 in Japan.

On such a small device there is little room for batteries, sensors or transmitters. So the solar cell on top delivers power, sending an electric current to both a sensor and a communication circuit. The communication component sends tiny electromagnetic pulses that are detected by an external computer.

The sensor meanwhile detects surrounding pH levels–the higher the pH concentration, the faster the electromagnetic pulses emitted by the micro-machine. The external computer uses these signals to direct a swarm of about 3,000 magnetically-sensitive bacteria, which push the micro-machine around as it pulses. The bacteria push the micro-machine closer to the higher pH concentrations and change its direction if it pulses too slowly. This is more practical than trying to attach the bacteria onto the micro-machines, says Martel, since the bacteria only have a lifespan of a few hours. “It’s like having a propulsion engine on demand,” he says…

Related: Self-assembling Nanofibers Heal Spinal Cords in MiceNanotechnology Breakthroughs for Computer ChipsUsing Bacteria to Carry Nanoparticles Into Cells

Cell Culture Lab Tour

Joanne Loves Science includes many webcasts on science, take a look for yourself. She contacted me through the post ideas page. She teaches mammalian cell culture techniques and the concepts of stem cells and tissue engineering in the Bioengineering Department at the University of Illinois. In this webcast she provides a tour of the cell culture lab.

Related: post on scientists at workTour the Carnegie Mellon Robotics LabCERN Tour webcastYoung Geneticists Making a Difference

  • Recent Comments:

    • Dạy kèm tiếng anh tại nhà: If this robot appeared in Vietnam then it is great, freeing labor for farmers....
    • Miner: Incredible. I missed this when this discovery was made. Proff that we have only identified a small...
    • Linda Peters: If you just pay attention to the science and make wise decisions with an understanding of...
    • mike garner: There are many reasons why they get damaged. Fishing activities is a big one. Cables get...
    • mike garner: The level of maintenance to keep an ROV or AUV running is considerable. Multiply that by the...
    • mike garner: I’ve worked on cable repair ships. Cables are damaged all of the time. I remember...
    • Jack Lawson: Wow! Awesome article and very entertaining story about insects. Animals are awesome! Keep it...
    • Mehmet: I think governments should encourage people for such initiatives.
  • Recent Trackbacks:

  • Links