Scientific Inquiry Process Finds More Evidence Supporting Einstein’s Theory

Posted on May 29, 2012  Comments (0)

As scientists have been able to see farther and deeper into the universe, the laws that govern its expansion have been revealed to be under the influence of an unexplained force.

In a paper on the arXiv, Astrophysical Tests of Modified Gravity: Constraints from Distance Indicators in the Nearby Universe, are a vindication of Einstein’s theory of gravity. Having survived several decades of tests in the solar system, it has passed this new test in galaxies beyond our own as well.

In 1998, astrophysicists made an observation that turned gravity on its ear: the universe’s rate of expansion is speeding up. If gravity acts the same everywhere, stars and galaxies propelled outward by the Big Bang should continuously slow down, like objects thrown from an explosion do here on Earth.

This observation used distant supernovae to show that the expansion of the universe was speeding up rather than slowing down. This indicated that something was missing from physicists’ understanding of how the universe responds to gravity, which is described by Einstein’s theory of general relativity. Two branches of theories have sprung up, each trying to fill its gaps in a different way.

One branch — dark energy — suggests that the vacuum of space has an energy associated with it and that energy causes the observed acceleration. The other falls under the umbrella of “scalar-tensor” gravity theories, which effectively posits a fifth force (beyond gravity, electromagnetism and the strong and weak nuclear forces) that alters gravity on cosmologically large scales.

“These two possibilities are both radical in their own way,” University of Pennsylvania astrophysicist Bhuvnesh Jain said. “One is saying that general relativity is correct, but we have this strange new form of energy. The other is saying we don’t have a new form of energy, but gravity is not described by general relativity everywhere.”

Jain’s research is focused on the latter possibility; he is attempting to characterize the properties of this fifth force that disrupts the predictions general relativity makes outside our own galaxy, on cosmic length scales. Jain’s recent breakthrough came about when he and his colleagues realized they could use the troves of data on a special property of a common type of star as an exquisite test of gravity.


Astrophysicists have been pursuing tests of gravity in the cosmos for many years, but conventional tests require data on millions of galaxies. Future observations are expected to provide such enormous datasets in the coming data. But Jain and his colleagues were able to bypass the conventional approach.

“We’ve been able to perform a powerful test using just 25 nearby galaxies that is more than a hundred times more stringent than standard cosmological tests,” Jain said.

The nearby galaxies are important because they contain stars called cepheids that are bright enough to be seen individually. Moreover, cepheids have been used for decades as a kind of interstellar yardstick because their brightness oscillates in a precise and predictable way.

“You can measure the brightness of a light bulb at some distance and know that, if you move it twice as far, it will be four times as faint. So you can tell just by the difference in its observed brightness how much further you moved it,” Jain said. “But you need to know how intrinsically bright the bulb is first to determine its actual distance from us.”

Cepheids have a unique trait that allows astrophysicists to get this critical information: their luminosity oscillates over the course of days and weeks. The known relationship between a cepheid’s rate of oscillation and intrinsic brightness serves as that baseline for calculating its distance from Earth, which in turn serves as a baseline for calculating the distance of other celestial objects. The accelerating universe observation, for example, relied upon cepheid data for scale.

“Now that we understand a little bit more about what makes the cepheids pulsate — essentially, a balance of gravity and pressure — we can use them to learn about gravity, not just distance,” Jain said. “If the fifth force enhances gravity even a little bit, it will make them pulsate faster.”

Because of their usefulness, there was already more than a decade of data on cepheids based on the Hubble Space Telescope and other large telescopes in Chile and Hawaii. Using that data, Jain and his colleagues compared nearly a thousand stars in 25 galaxies.

Jain and his colleagues ultimately did not see variations between their control sample of screened galaxies and their test sample of unscreened ones. Their results line up exactly with the prediction of Einstein’s general relativity. This means that the potential range and strength of the fifth force is severely constrained.

“We find consistency with Einstein’s theory of gravity and we sharply narrow the space available to these other theories. Many of these theories are now ruled out by the data,” Jain said.

Related: Gravity and the Scientific Methodfull press releaseQuantum Information Theory Postulated As Source of Emergent Theory of GravityIs Dark Matter an Illusion?Why do we Need Dark Energy to Explain the Observable Universe?

Leave a Reply





Current ye@r *