Posts about electical engineering

Highest Paying Fields at Mid Career in USA: Engineering, Science and Math

Payscale has again provided details on average salaries by major for various fields. Once again engineering, math and science dominate. For this data they define mid-career as those with 10+ years of experience.

The top 15 bachelor degrees by mid-career salary were all from those 3 fields. And the median salary was $168,000 for petroleum engineering degrees (at the top) to $107,000 for Aerospace Engineering and Computer Science and Mathematics (tied for 14th).

The starting salaries for those with these degrees ranged from $58,000 for Actuarial Mathematics (though by mid-career salary they were in 3rd place at $119,000) to $101,000 for petroleum engineering. My guess is petroleum engineering salaries will decline from their current highs (as they have done in previous oil price busts). The second highest paying bachelor degree starting salary was for mining engineering at $71,500 – with most of the other fairly close to that amount.

Nuclear engineering pay started at a median of $68,200 before rising to the 2nd highest mid-career level of $121,000.

Payscale also provided data based on master’s degree field. Again petroleum engineering was in first place by mid-career ($173,000). Nurse anesthesia was in second at $159,000 and held the first spot for starting median salary ($139,000).

Taxation is the only filed that is obviously not STEM (science, technology, engineering and math) related which had the lowest initial median salary of $60,700 but was tied for 5th for mid career salary at $126,000. Technology management and operations research are also not STEM fields though are a bit related to the STEM area.

PhD degree’s with the highest mid-career median earning are again all STEM fields. Economics is one many people probably don’t think of as STEM but it is (as a social science) and really it is largely mathematics at this point.

Many of the PhD starting salaries are at $100,000 (or close). The disciplines with the highest mid-career median salaries are: Electrical and Computer Engineering $142,000; Computer Engineering $139,000; Chemical Engineering $138,000; Biomedical Engineering, $137,000; and Economics $134,000.

Related: No Surprise, Engineering Graduates Pay Continue to Reign Supreme (2012)The Time to Payback the Investment in a College Education in the USA Today is Nearly as Low as Ever, Surprisingly (2014)Engineering Again Dominates The Highest Paying College Degree Programs (2011)Earnings by College Major” Engineers and Scientists at the Top (2013)Looking at the Value of Different College Degrees

RoboBoat 2014 – Student Designed Autonomous Boats

The first video gives a recap of RoboBoat 2014. In 2014, Embry-Riddle Aeronautical University took 1st place. University of Florida was 2nd, followed by the Robotics Club at UCF and in 4th place the Georgia Institute of Technology.

The teams must design and build an autonomous boat to compete in challenges. During the competition, student teams race their autonomous surface vehicles through an aquatic obstacle course. This includes littoral area navigation, channel following, and autonomous docking. The competition provides an opportunity for students to develop skills in system engineering by accomplishing realistic missions with autonomous vehicles in the maritime environment.

A team participated from Diponegoro University, Semarang, Indonesia, which is next to me – though about as far from the finals as you can be on the globe.

Related: 9th International Autonomous Underwater Vehicle Competition20th Annual US First Robotics CompetitionBotball 2009 FinalsRobo-One Grand Championship in Tokyo (2007)Eco-Vehicle Student Competition

Continue reading

Battery Breakthrough Using Organic Storage

Battery offers renewable energy breakthrough

a metal-free flow battery that relies on the electrochemistry of naturally abundant, inexpensive, small organic (carbon-based) molecules called quinones, which are similar to molecules that store energy in plants and animals.

The mismatch between the availability of intermittent wind or sunshine and the variable demand is the biggest obstacle to using renewable sources for a large fraction of our electricity. A cost-effective means of storing large amounts of electrical energy could solve this problem.

Flow batteries store energy in chemical fluids contained in external tanks, as with fuel cells, instead of within the battery container itself. The two main components — the electrochemical conversion hardware through which the fluids are flowed (which sets the peak power capacity) and the chemical storage tanks (which set the energy capacity) — may be independently sized. Thus the amount of energy that can be stored is limited only by the size of the tanks. The design permits larger amounts of energy to be stored at lower cost than with traditional batteries.

This looks like a very interesting field of research. Storing power remains one of the challenges for renewable energy sources such as solar and wind. This is especially true if the use is disconnected from the grid, but is even true for grid-connected uses. Especially as increasing the amount of wind and solar energy make it increasingly likely that surplus energy is created at certain times.

The research seems to allow for sensible size home storage setups. At the commercial level the volume needed is very large. Another concern to be addressed is how many cycles the “battery” is good for before it degrades; current experimentation show no degradation after 100 cycles but consumer/commercial usage will need thousands of cycles.

Related: Battery Breakthrough (solid sodium metal mated to a sulphur compound by an extraordinary, paper-thin ceramic membrane)Energy Storage Using Carbon Nanotubes (2006)Chart of Wind Power Generation Capacity Globally 2005-2012Recharge Batteries in Seconds

Arduino Introduction Video Tutorial

Arduino is a very cool open source programable hardware engineering initiative. It is great for kids and adults who like to learn and create electronic devices. The Arduino Starter Kit is a great education gift for those interested in such things.

The video explains how to build a basic circuit with the Arduino board, and how to use each of the basic components such as LEDs, switches, and resistors. See more videos on related topics. Massimo Banzi, the co-creator and CEO of Arduino, and seen in the videos, also has a book: Getting Started with Arduino.

Related: Schematics of Electronic CircuitsEZ-Builder Robot Control Software

Roominate: Inspiring Artists, Engineers and Visionaries

Roominate is a cool new toy created by 3 engineering students aimed at giving young engineers a way to learn, experiment and create. The 3 women used kickstarter to get the funds needed to launch their product. They raised $85,000 (the goal was $25,000).

We’re more than just a toy company. We want to inspire your daughters to be the great artists, engineers, architects, and visionaries of their generation. We intend to give them every tool to reach that potential.

Founders:

Bettina Chen: CalTech BS in Electrical Engineering, masters in Electrical Engineering from Stanford.

Alice Brooks: MIT BS in Mechanical Engineering, currently at Stanford pursuing masters in Mechanical Engineering design.

Jennifer Kessler: Bachelor degree from University of Pennsylvania, currently an MBA student at Stanford.

This is yet another example of entrepreneurship shown by Standford students. The USA is hugely benefited by Stanford (along with a few other schools: MIT, Caltech, etc.). There is little a country can do that is as helpful economically as encouraging the type of entrepreneurship Standford does.

Related: Awesome Gifts for the Maker in Your LifeFootballs Providing Light to Those Without Electricity at HomeGirls Sweep Top Honors at Siemens Competition in Math, Science and TechnologyFix it Goo

Schematics of Electronic Circuits

Reading circuit diagrams

Schematic diagrams are made up of two things: symbols that represent the components in the circuit, and lines that represent the connections between them.

If a line runs between components, it means that they are connected, period, and it tells you nothing else. The connection can be a wire, a copper trace, a plug-socket connection, a metal chassis, or anything else that electricity will run through without much resistance. Messy details like wire or cable specifications and routing, if they are important for a project, belong elsewhere in its documentation. The length of a line also has nothing to do with the connection’s actual distance in real life. Schematics are drawn (ideally) to be clear and simple, with components and connections arranged on the page to minimize clutter, not to represent how they might be placed on a circuit board.

The video and the article give you a good start on understanding schematics. There are 2 ways to show wires crossing in a schematic (the video shows one, the article shows both). Learning how to read a schematic gives you the ability to go many different directions with your home engineering efforts. Have fun.

Related: Arduino: Open Source Programmable HardwareEZ-Builder Robot Control SoftwareBuilding a Windmill to Generate Electricity by Reading and ExperimentingTeaching Through Tinkering

Nikola Tesla – A Scientist and Engineer

Nikola Tesla (1856-1943) was born an ethnic Serb in the village of Smiljan, in the Austrian Empire (today’s Croatia), he was a subject of the Austrian Empire by birth and later became an American citizen. Nikoka Tesla studied electrical engineering at Technical University at Graz, Austria, and the University of Prague.

Tesla’s patents and theoretical work formed the basis of modern alternating current (AC) electric power systems, including the polyphase system of electrical distribution and the AC motor, which helped usher in the Second Industrial Revolution.

In 1882 he moved to Paris, to work as an engineer for the Continental Edison Company, designing improvements to electric equipment brought overseas from Edison’s ideas.
According to his autobiography, in the same year he conceived the induction motor and began developing various devices that use rotating magnetic fields for which he received patents in 1888.

He emigrated to the United States in 1884 and sold the patent rights to his system of alternating-current dynamos, transformers, and motors to George Westinghouse the following year.

In 1887, Tesla began investigating what would later be called X-rays using his own single terminal vacuum tubes.

Tesla introduced his motors and electrical systems in a classic paper, “A New System of Alternating Current Motors and Transformers” which he delivered before the American Institute of Electrical Engineers in 1888. One of the most impressed was the industrialist and inventor George Westinghouse.

The Tesla coil, which he invented in 1891, is widely used today in radio and television sets and other electronic equipment. Among his discoveries are the fluorescent light , laser beam, wireless communications, wireless transmission of electrical energy, remote control, robotics, Tesla’s turbines and vertical take off aircraft. Tesla is the father of the radio and the modern electrical transmissions systems. He registered over 700 patents worldwide. His vision included exploration of solar energy and the power of the sea. He foresaw interplanetary communications and satellites.

“Within a few years a simple and inexpensive device, readily carried about, will enable one to receive on land or sea the principal news, to hear a speech, a lecture, a song or play of a musical instrument, conveyed from any other region of the globe.” – Nikola Tesla, “The Transmission of Electrical Energy without wires as a means for furthering Peace” in Electrical World and Engineer (7 January 1905)

“Money does not represent such a value as men have placed upon it. All my money has been invested into experiments with which I have made new discoveries enabling mankind to have a little easier life.” – Nikola Tesla

Related: PBS – Tesla, Master of LightningWerner HeisenbergToyota Develops Thought-controlled WheelchairNeil Degrasse Tyson: Scientifically Literate See a Different World

New Server Uses 75% Less Power and Space

SeaMicro drops an atom bomb on the server industry

[SeaMicro] has created a server with 512 Intel Atom chips that gets supercomputer performance but uses 75 percent less power and space than current servers.

Today’s servers are so inefficient when it comes to being properly utilized,” Feldman said. “This misalignment between the server and the work load is the root of the power consumption problem.”

So SeaMicro guessed that servers could benefit instead by using lots of smaller processors, and it got lucky when Intel started promoting its low-power, low-cost Atom chip for netbooks. That lowered power consumption, since Atom processors deliver three times the performance per watt versus Intel’s server chips.

But SeaMicro also attacked the power consumption in the rest of the system, which accounts for about two thirds of the power consumed by a server.

it applied the concept of virtualization to the inside of a server. Feldman designed custom chips that could take the tasks that were handled by everything beyond the Intel microprocessor and its chip set. The custom chips virtualize all of those other components so that it finds the resource when it’s needed. It essentially tricks the microprocessor into thinking that the rest of the system is there when it needs it.

SeaMicro virtualized a lot of functions that took up a lot of space inside each server in a rack. It also did the same with functions such as storage, networking, server management and load balancing. Full told, SeaMicro eliminates 90 percent of the components from a system board. SeaMicro calls this CPU/IO virtualization. With it, SeaMicro shrinks the size of the system board from a pizza box to the size of a credit card.

This advance is coming just in time. Google said recently that if current power trends continue, the cost of energy consumed by a server during its three-year life span could surpass the initial purchase cost for the hardware. The Environmental Protection Agency reports that volume servers consume more than 1 percent of the total electricity in the US—representing billions of dollars in wasted operating expense each year.

Related: Google Server Hardware DesignData Center Energy NeedsGoogle Uses Only Outside Air to Cool Data Center in Belgium

Green Technology Innovation by College Engineering Students

With prizes totaling more than $100,000 in value, this year’s Climate Leadership Challenge is believed to be the most lucrative college or university competition of its kind in the country. The contest was open to all UW-Madison students.

A device that would help provide electricity efficiently and at low cost in rural areas of developing countries took the top prize – $50,000 – this week in a student competition at the University of Wisconsin-Madison for innovative ideas to counteract climate change.

The “microformer” is the brainchild of Jonathan Lee, Dan Ludois, and Patricio Mendoza, all graduate students in electrical engineering. Besides the cash prize, they will receive a promotional trip worth $5,000 and an option for a free one-year lease in the University Research Park’s new Metro Innovation Center on Madison’s east side.

“We really want to see implementation of the best ideas offered,” said Tracey Holloway, director of the Nelson Institute Center for Sustainability and the Global Environment at UW-Madison, which staged the contest for the second year in a row. “The purpose of this competition is to make an impact on climate change.”

The runner-up for the “most action-ready idea” was a proposal to promote the use of oil from Jatropha curcas plants to fuel special cooking stoves in places like Haiti. UW-Madison seniors Eyleen Chou (mechanical engineering), Jason Lohr (electrical engineering), Tyler Lark (biomedical engineering/mathematics) won $10,000 for their scheme to reduce deforestation by lowering demand for wood charcoal as a cooking fuel.

CORE Concept, a technology that would cut emissions from internal combustion engines by using a greater variety of fuels, won mechanical engineering doctoral students Sage Kokjohn, Derek Splitter, and Reed Hanson $15,000 as the “most innovative technical solution.”

SnowShoe, a smart phone application that would enable shoppers to check the carbon footprint of any item in a grocery store by scanning its bar code, won $15,000 as the “most innovative non-technical solution.” Graduate students Claus Moberg (atmospheric and oceanic science), Jami Morton (environment and resources), and Matt Leudtke (civil and environmental engineering) submitted the idea.

Other finalists were REDCASH, a plan to recycle desalination wastewater for carbon sequestration and hydrogen fuel production, by doctoral student Eric Downes (biophysics) and senior Ian Olson (physics/engineering physics); and Switch, an energy management system that integrates feedback and incentives into social gaming to reduce personal energy use, by doctoral students David Zaks (environment and resources) and Elizabeth Bagley (environment and resources/educational psychology).

Related: University of Michigan Wins Solar Car Challenge AgainCollegiate Inventors Competition$10 Million X Prize for 100 MPG Car

Engineering: Cellphone Microscope

UCLA Professor Aydogan Ozcan‘s invention (LUCAS) enables rapid counting and imaging of cells without using any lenses even within a working cell phone device. He placed cells directly on the imaging sensor of a cell phone. The imaging sensor captures a holographic image of the cells containing more information than a conventional microscope. The CelloPhone received a Wireless Innovations Award from Vodafone

a wireless health monitoring technology that runs on a regular cell-phone would significantly impact the global fight against infectious diseases in resource poor settings such as in Africa, parts of India, South-East Asia and South America.

The CelloPhone Project aims to develop a transformative solution to these global challenges by providing a revolutionary optical imaging platform that will be used to specifically analyze bodily fluids within a regular cell phone. Through wide-spread use of this innovative technology, the health care services in the developing countries will significantly be improved making a real impact in the life quality and life expectancy of millions.

For most bio-medical imaging applications, directly seeing the structure of the object is of paramount importance. This conventional way of thinking has been the driving motivation for the last few decades to build better microscopes with more powerful lenses or other advanced imaging apparatus. However, for imaging and monitoring of discrete particles such as cells or bacteria, there is a much better way of imaging that relies on detection of their shadow signatures. Technically, the shadow of a micro-object can be thought as a hologram that is based on interference of diffracted beams interacting with each cell. Quite contrary to the dark shadows that we are used to seeing in the macro-world (such as our own shadow on the wall), micro-scale shadows (or transmission holograms) contain an extremely rich source of quantified information regarding the spatial features of the micro-object of interest.

By making use of this new way of thinking, unlike conventional lens based imaging approaches, LUCAS does not utilize any lenses, microscope-objectives or other bulk optical components, and it can immediately monitor an ultra-large field of view by detecting the holographic shadow of cells or bacteria of interest on a chip. The holographic diffraction pattern of each cell, when imaged under special conditions, is extremely rich in terms of spatial information related to the state of the cell or bacteria. Through advanced signal processing tools that are running at a central computer station, the unique texture of these cell/bacteria holograms will enable highly specific and accurate medical diagnostics to be performed even in resource poor settings by utilizing the existing wireless networks.

This is another great example of engineers creating technologically appropriate solutions.

Related: Better health through your cell phoneMobile Phone-based Vehicle Anti-theft SystemAppropriate Technology: Self Adjusting GlassesEngineering a Better World: Bike Corn-ShellerThe Engineer That Made Your Cat a PhotographerFreeware Wi-Fi app turns iPod into a Phone

Battery Breakthrough

New battery could change world

Inside Ceramatec’s wonder battery is a chunk of solid sodium metal mated to a sulphur compound by an extraordinary, paper-thin ceramic membrane. The membrane conducts ions — electrically charged particles — back and forth to generate a current. The company calculates that the battery will cram 20 to 40 kilowatt hours of energy into a package about the size of a refrigerator, and operate below 90 degrees C.

This may not startle you, but it should. It’s amazing. The most energy-dense batteries available today are huge bottles of super-hot molten sodium, swirling around at 600 degrees or so. At that temperature the material is highly conductive of electricity but it’s both toxic and corrosive. You wouldn’t want your kids around one of these.

The essence of Ceramatec‘s breakthrough is that high energy density (a lot of juice) can be achieved safely at normal temperatures and with solid components, not hot liquid.

Ceramatec says its new generation of battery would deliver a continuous flow of 5 kilowatts of electricity over four hours, with 3,650 daily discharge/recharge cycles over 10 years. With the batteries expected to sell in the neighborhood of $2,000, that translates to less than 3 cents per kilowatt hour over the battery’s life. Conventional power from the grid typically costs in the neighborhood of 8 cents per kilowatt hour.

A small three-bedroom home in Provo might average, say, 18 kWh of electric consumption per day in the summer — that’s 1,000 watts for 18 hours. A much larger home, say five bedrooms in the Grandview area, might average 80 kWh, according to Provo Power.;Either way, a supplement of 20 to 40 kWh per day is substantial. If you could produce that much power in a day — for example through solar cells on the roof — your power bills would plummet.

Ceramatec’s battery breakthrough now makes that possible.

Clyde Shepherd of Alpine is floored by the prospect. He recently installed the second of two windmills on his property that are each rated at 2.4 kilowatts continuous output. He’s searching for a battery system that can capture and store some of that for later use when it’s calm outside, but he hasn’t found a good solution.

“This changes the whole scope of things and would have a major impact on what we’re trying to do,” Shepherd said. “Something that would provide 20 kilowatts would put us near 100 percent of what we would need to be completely independent. It would save literally thousands of dollars a year.”

Very interesting stuff. If they can take it from the lab to production this could be a great thing, I would like one.

Related: Recharge Batteries in SecondsUsing Virus to Build BatteriesBlack and Decker Codeless Lawn Mower Review