…
Its unique electrical characteristics could make graphene the successor to silicon in a whole new generation of microchips, surmounting basic physical constraints limiting the further development of ever-smaller, ever-faster silicon chips.
But that’s only one of the material’s potential applications. Because of its single-atom thickness, pure graphene is transparent, and can be used to make transparent electrodes for light-based applications such as light-emitting diodes (LEDs) or improved solar cells.
…
Graphene could also substitute for copper to make the electrical connections between computer chips and other electronic devices, providing much lower resistance and thus generating less heat. And it also has potential uses in quantum-based electronic devices that could enable a new generation of computation and processing.
“The field is really in its infancy,” says Michael Strano, associate professor of chemical engineering who has been investigating the chemical properties of graphene. “I don’t think there’s any other material like this.”
The mobility of electrons in graphene — a measure of how easily electrons can flow within it — is by far the highest of any known material. So is its strength, which is, pound for pound, 200 times that of steel. Yet like its cousin diamond, it is a remarkably simple material, composed of nothing but carbon atoms arranged in a simple, regular pattern.
“It’s the most extreme material you can think of,” says Palacios. “For many years, people thought it was an impossible material that couldn’t exist in nature, but people have been studying it from a theoretical point of view for more than 60 years.”
Related: Very Cool Wearable Computing Gadget from MIT – Nanotechnology Breakthroughs for Computer Chips – Cost Efficient Solar Dish by MIT Students – Superconducting Surprise