Posts about quote

Can You Effectively Burn Calories by Drinking Cold Water?

Neil deGrasse Tyson stated on Twitter:

Wanna lose 1200 Calories a month? Drink a liter of ice water a day. You burn the energy just raising the water to body temp.

What if your body is trying to cool down? I would imagine we have to use energy to cool off (though I am no expert on this)? So if you drink cold water and your body has less need to cool off, couldn’t this actually end up “saving” your body needing to burn calories – and thus cause yourself to gain weight?

This model would be similar to a server room that was cooled with air conditioning and cold winter air to cool off the servers. If there was less cold air used then more electricity would be used running the air conditioner to cool down the servers. I don’t know if it is a decent analogy though – maybe that isn’t an usable model for how we cool off.

I know we cool off partially by pushing water out onto the exterior of our skin to have it evaporate and cool us off. I would think that takes energy to do.

I do get that it takes energy to raise the temperature of the water you consume. It does make sense to me that if you were cold (like say I was during the winter living in the house I grew up in) you would use energy raising the temperature of the water.

What the overall energy situation is if your body needs to cool down seems questionable to me. Please let me know your thoughts. In any event his statement is accurate. It is just that the implication may lead people astray; that you can consume 1,200 Calories extra to balance the 1,200 Calories drinking cold water uses (or loss weight by having reduced your excess Calories by 1,200 if you eat exactly the same things you would without the cold water).

Related: Why is it Colder at Higher Elevations?Does Diet Soda Result in Weight Gain?Why Does Hair Turn Grey as We Age?How Corn Syrup Might Be Making Us FatWhy Wasn’t the Earth Covered in Ice 4 Billion Years Ago (When the Sun was Dimmer)

George Box 1919 to 2013 – A Great Friend, Scientist and Statistician

Reposted from my management blog.

I would most likely not exist if it were not for George Box. My father took a course from George while my father was a student at Princeton. George agreed to start the Statistics Department at the University of Wisconsin – Madison, and my father followed him to Madison, to be the first PhD student. Dad graduated, and the next year was a professor there, where he and George remained for the rest of their careers.

George died today, he was born in 1919. He recently completed An Accidental Statistician: The Life and Memories of George E. P. Box which is an excellent book that captures his great ability to tell stories. It is a wonderful read for anyone interested in statistics and management improvement or just great stories of an interesting life.

photo of George EP Box

George Box by Brent Nicastro.

George Box was a fantastic statistician. I am not the person to judge, but from what I have read one of the handful of most important applied statisticians of the last 100 years. His contributions are enormous. Several well know statistical methods are known by his name, including:

George was elected a member of the American Academy of Arts and Sciences in 1974 and a Fellow of the Royal Society in 1979. He also served as president of the American Statistics Association in 1978. George is also an honorary member of ASQ.

George was a very kind, caring and fun person. He was a gifted storyteller and writer. He had the ability to present ideas so they were easy to comprehend and appreciate. While his writing was great, seeing him in person added so much more. Growing up I was able to enjoy his stories often, at our house or his. The last time I was in Madison, my brother and I visited with him and again listened to his marvelous stories about Carl Pearson, Ronald Fisher and so much more. He was one those special people that made you very happy whenever you were near him.

George Box, Stuart Hunter and Bill Hunter (my father) wrote what has become a classic text for experimenters in scientific and business circles, Statistics for Experimenters. I am biased but I think this is acknowledged as one of (if not the) most important books on design of experiments.

George also wrote other classic books: Time series analysis: Forecasting and control (1979, with Gwilym Jenkins) and Bayesian inference in statistical analysis. (1973, with George C. Tiao).

George Box and Bill Hunter co-founded the Center for Quality and Productivity Improvement at the University of Wisconsin-Madison in 1984. The Center develops, advances and communicates quality improvement methods and ideas.

The Box Medal for Outstanding Contributions to Industrial Statistics recognizes development and the application of statistical methods in European business and industry in his honor.

All models are wrong but some are useful” is likely his most famous quote. More quotes By George Box

A few selected articles and reports by George Box

Related: It is not about proving a theorem it is about being curious about thingsBox on QualitySoren BisgaardLearning Design of Experiments with Paper HelicoptersPeter Scholtes

Cell Aging and Limits Due to Telomeres

When cells divide the process fails to copy DNA all the way to the end. Telomeres are are the end of DNA strands, as essentially a buffer of material that won’t cause information to be lost when part of the telomere isn’t copied. As DNA is copied, as new cells are created, the length of telomeres at the end is reduced. Once the telomeres are gone the cell will no longer divide.

The 2009 Nobel Prize in Physiology or Medicine went to 3 scientists for discovering how the chromosomes can be copied in a complete way during cell divisions and how they are protected against degradation. The Nobel Laureates have shown that the solution is to be found in the ends of the chromosomes – the telomeres – and in an enzyme that forms them – telomerase.

There is some debate over the benefit of the mechanism of cells not dividing do to lack of telomere. This can prevent cancerous cells from replicating (once they replicate to the extent that the necessary telomere buffer is gone). It is also seen that as telomeres get shorter the cells become more likely to become cancerous.

Cancer also can stimulate the production of telomerase which can stop telomeres from getting shorter as cells divide and thus allow the cancer cells to keep dividing (thus producing more cancer cell and increasing the amount of cancerous cells). Using telomerase to allow health cells to avoid the limits of division is being researched.

Are Telomeres the Key to Aging and Cancer? (University of Utah)

An enzyme named telomerase adds bases to the ends of telomeres. In young cells, telomerase keeps telomeres from wearing down too much. But as cells divide repeatedly, there is not enough telomerase, so the telomeres grow shorter and the cells age.

Cells normally can divide only about 50 to 70 times, with telomeres getting progressively shorter until the cells become senescent, die or sustain genetic damage that can cause cancer.

shorter telomeres are associated with shorter lives. Among people older than 60, those with shorter telomeres were three times more likely to die from heart disease and eight times more likely to die from infectious disease.

While telomere shortening has been linked to the aging process, it is not yet known whether shorter telomeres are just a sign of aging – like gray hair – or actually contribute to aging.

Related: The Naked Mole Rat is the Only Known Cancerless AnimalWebcast of a T-cell Killing a Cancerous CellRNA interference webcast

The Eagle Has Landed

Neil Armstrong and Buzz Aldren land on the moon: July 20, 1969. As Neil Armstrong took humanity’s first step onto the Moon he said:

That’s one small step for man, one giant leap for mankind.

Related: Experiment, dropping a hammer and feather on the MoonPlanetary scientist Jennifer Heldmann discusses the MoonApply to be an AstronautOne Giant Leap For Mankind

Our Dangerous Antibiotic Practices Carry Great Risks

Our continued poor antibiotics practices increase the risk of many deaths. We are very poor at reacting to bad practices that will kill many people in the future. If those increased deaths happened today it is much more likely we would act. But as it is we are condemning many to have greatly increased odds of dying from bacterial causes that could be prevented if we were more sensible.

Resistance to antibiotics is becoming a crisis

Increasingly, microbes are becoming untreatable. Margaret Chan, director general of the World Health Organization, warned in March of a dystopian future without these drugs. “A post-antibiotic era means, in effect, an end to modern medicine as we know it,” she said. “Things as common as strep throat or a child’s scratched knee could once again kill.”

evidence is mounting that antibiotics are losing efficacy. Through the relentless process of evolution, pathogens are evading the drugs, a problem known broadly as antimicrobial resistance.

Europe has launched a $741 million, seven-year, public-private collaborative research effort to accelerate drug development.

Seeking new antibiotics is wise but the commentary completely ignores our bad practices that are causing the problem to be much worse than it would be if we acted as though bad practices that will lead to many deaths should be avoided.

Previous posts about practices we taking that create great risk for increased deaths: Antibiotics Too Often Prescribed for Sinus Woes (2007)Meat Raised Without Antibiotics is Sadly Rare Today (2007)Overuse of Antibiotics (2005)CDC Urges Increased Effort to Reduce Drug-Resistant Infections (2006)FDA May Make Decision That Will Speed Antibiotic Drug Resistance (2007)Antibacterial Soaps are Bad (2007)Waste Treatment Plants Result in Super Bacteria (2009)Antibiotics Breed Superbugs Faster Than Expected (2010)Antibiotics Use in Farming Can Create Superbugs (2010)What Happens If the Overuse of Antibiotics Leads to Them No Longer Working? (2011)Dangerous Drug-Resistant Strains of TB are a Growing Threat (2012)

Obviously bacteria evolve to survive the counter measures we currently have. The foolish practices of promoting ignorance of evolution leads to a society where the consequences of actions, and the presence of evolution, lead to bad consequences. We find ourselves in that society.

Continue reading

Star Stuff: The Universe is In Us

Great statement from Neil DeGrasse Tyson on “what is the most astounding fact you can share with us about the universe.”

“The atoms that comprise life on earth, the atoms that make up the human body, are traceable to the crucibles that cooked light elements into heavy elements in their core under extreme temperatures and pressures. These stars, the high mass ones among them, went unstable in their later years. They collapsed and then exploded scattering their enriched guts across the galaxy. Guts made of carbon, nitrogen, oxygen, and all the fundamental ingredients of life itself. These ingredients become part of gas clouds that condense, collapse, form the next generation of solar systems: stars with orbiting planets. And those planets now have the ingredients for life itself. So when I look up at the night sky and I know that, yes we are part of this universe, we are in this universe, but perhaps more important than both of those facts, is that the universe is in us… my atoms came from those stars….”

I think this might well be my thought on the most astounding fact also. Ever since I learned the atoms we are made of were created inside stars it has never ceased to amaze me.

Neil DeGrasse Tyson is amazing. I would edit his statement a bit myself, though, to make it:

“The most astounding fact is that the atoms that comprise life on earth, the atoms that make up the human body, were created in the crucible of stars that cooked light elements into heavy elements. Those stars went unstable, in their later years: they collapsed and then explored scattering their enriched cores across the galaxy. Those stars made the carbon, nitrogen, oxygen, and all the fundamental ingredients of life itself. Those ingredients became part of gas clouds that condensed to form the next generation of solar systems: stars with orbiting planets. And those planets have the ingredients for life. So when I look up at the night sky, I know that my atoms came from the predecessors of the stars I see.”

Related: Scientifically Literate People See a Different WorldTen Things Everyone Should Know About ScienceGravity and the Scientific MethodThe Importance of Science Education

Study of the Colony Collapse Disorder Continues as Bee Colonies Continue to Disappear

I can understand why people get complacent. We have a pretty remarkable run of science and technology finding solutions for whatever peril we face.

Also, quite often, future risks are over-blown. Then, people get habituated to reading ominous predictions, followed by a future doesn’t seem to reach those dramatic predictions. But this is a risky pattern to just expect – that no matter what we will figure out some way to avoid the consequences.

Risks actually do come true. The obvious result of overfishing, just as predicted, has resulted in collapses of fish populations over and over creating great hardship for those who had fallen victim to that prediction. If people don’t vaccinate themselves (and their kids) we will have ever increasing numbers of deaths and sickness. If we fail to use anti-biotics is a long term sustainable way, our actions will result in many deaths.

I am not sure why we find it so easy to ignore the evidence of bad consequences but we do. Partially I would imagine that as problems begin to be manifest countermeasures take affect. So in the fishing example, many people leave that line of work and so the numbers in the industry after a collapse, who are suffering in the present, are reduced. Still I find it odd how easily we ignore the risks in the future.

I do understand if there are short term benefits to ignoring the risks (or pretending they don’t exist): so you have fisherman that don’t want to take steps in advance to avoid collapse. Or you have industries and politicians that want to pretend ignoring global warming is a strategy to avoid the consequences. Or you have parents that say, well today we don’t have many risks of sicknesses people get vaccinated against (yes, because people have been vaccinated – if you stop vaccinating your children they we get to experience the avoidable pain and suffering).

I have been following the honeybee colony collapse disorder for several years (see the end of the posts for links to posts from 2006 – 2010, like this one The Study of Bee Colony Collapses Continues from 2007). It is a great example of the scientific inquiry process. It is messy and confusing and full of studies that have trouble finding what the actually causes are or what solutions will work.

There are occasionally mentions of how devestating things could get if the trend continues. In fact stories that seem so devestating that they just don’t seem real. surely either that won’t happen or if it started to some countermeasure would be found to deal with the problem and avoid the most severe consequences. That is basially how I have felt about it. But that is not because of some scientific understanding but just a feeling that hey that couldn’t really happen. Well that isn’t exactly solid evidence that it can’t.

Honeybee problem nearing a ‘critical point’

In addition to continued reports of CCD — a still somewhat mysterious phenomenon in which entire bee colonies literally disappear, alien-abduction style, leaving not even their dead bodies behind — bee populations are suffering poor health in general, and experiencing shorter life spans and diminished vitality. And while parasites, pathogens, and habitat loss can deal blows to bee health, research increasingly points to pesticides as the primary culprit.

farmers use these chemicals to protect their crops from destructive insects, but in so doing, they harm other insects essential to their crops’ production — a catch-22 that Hackenberg said speaks to the fact that “we have become a nation driven by the chemical industry.” In addition to beekeeping, he owns two farms, and even when crop analysts recommend spraying pesticides on his crops to kill an aphid population, for example, he knows that “if I spray, I’m going to kill all the beneficial insects.” But most farmers, lacking Hackenberg’s awareness of bee populations, follow the advice of the crop adviser — who, these days, is likely to be paid by the chemical industry, rather than by a state university or another independent entity.

I believe this is the latest advise of the Unites States Department of Agriculture (though their web site doesn’t make it nearly as obvious as it should that this is in fact the current advice – the document seems to indicate it is but if someone were to say no, that is outdated, it wouldn’t be hard to believe)

Continue reading

Healthy Diet, Healthy Living, Healthy Weight

Living and eating healthily is tricky but not entirely confusing. The whole area of eating healthy food and what is a healthy weight is one where the scientific inquiry process and the complexity of scientific research on what is healthy for us is clear. Scientists study various issues and learn things but creating simple rules has proven difficult. Different studies seem to show benefits of contradictory advice, advice once seen as wise is now seen as wrong…

This is an area I am far from knowledgable about. Still I try to pay some attention as I like being healthy. Being sick is the quickest way to appreciate how great it is to be healthy. From various things I have skimmed it seems there is more evidence from several studies about how difficult it is to lose weight. Our bodies seem to work against our efforts.

And this, it seems to me, makes the problem of increasing childhood and teen obesity even more important to deal with as soon as issues arise.

It seems to me the most important thing to take from this, is the importance of maintaining a healthy weight: since you can’t just easily make up for a bad year of weight gain. I am not sure why I haven’t seen this note in most of what I have read – I suspect it is our reluctance to make value judgements about what is healthy. The problem I see with that is, the best advice we have is confusing enough without people with more knowledge being reluctant to state their best advice given the current knowledge. That doesn’t mean the suggestions are right, but at least they are educated guesses.

I try to eat relatively healthily. Which for me means taking steps to increase the amount of vegetables I eat (especially greens and some fiber) and decrease the amount of sweets and heavily processed food I eat (I still eat way too much heavily processed food). And I try to exercise as it seems to have many benefits including helping make up for some weaknesses in your diet (like eating too many calories and too many “empty calories). In my opinion (which on this topic may well not be worth much) eating a bit more stuff that really isn’t so good for you and exercising more is an easier tradeoff than trying to eat perfectly and do the minimum amount of exercise needed to stay healthy.

I also eat yogurt – I like it and the beneficial benefits of some bacteria seems likely. I heard recently something that surprised me which is that the beneficial bacteria remain for close to 2 weeks. I figured they would be gone in a couple days. I only heard that from one source (I can’t remember now but some seemingly knowledgable source – scientist researching the area), so it might not be accurate but it was interesting.

Here is an example of one of these health studies. They find that a low protein diet resulted in a loss of “lean weight” (muscle…) and more fat than a comparable diet with more protein. The same weight with a higher percentage of fat is not a good thing for human health. Thus the message is that a lower protein diet has this risk that must be considered (and therefor higher protein diets may well be wise). Of course things get much more complicated than that when we actually try to live by a diet.

Effect of Dietary Protein Content on Weight Gain, Energy Expenditure, and Body Composition During Overeating

Continue reading

Nature Uses Stem Cells from Fetus to Repair Health of Mother

Science shows us so many amazing things. Scientists have learned mice use stem cells from the fetus to repair damage to the mother in the event of things like heart attacks. And there is evidence people do the same thing. Very cool. Nature beat us to the idea of using stem cells to treat health problems.

Helpful Mouse Fetuses Naturally Send Stem Cells to Mom to Fix Her Damaged Heart

When the scientists examined the female mice’s heart tissue two weeks after the heart attacks, they found lots of glowing green tissue—cells that came from the fetus—in the mom’s heart. Mice who had heart attacks had eight times as many cells from the fetus in their hearts as mice who hadn’t had a heart attack did, meaning the high volume of fetal cells was a response to the heart attack.

What’s more, the embryo’s stem cells had differentiated into various types of heart tissue, including cardiomyocytes, the rhythmically contracting muscle cells that produce a heartbeat.

The hearts of two women who suffered from severe heart weakness were later found to contain cells derived from the cells of a male fetus years after they gave birth to their sons.

The same thing seems to hold true for other organs. When pregnant women have damage in other organs, including the brain, lung, and liver, earlier studies have shown, fetal cells show up there, too.

It makes sense for a fetus to try and aid the mother but it is amazing the evolution found such solutions. Given how many challenges the fetus creates for the mother giving some benefits can help increase the odds of a health birth.

Related: Researchers Explain How Rotifers Thrive Despite Forgoing SexMaking Embryonic Stem CellsStructure and Function of RibosomeWhy People Often Get Sicker When They’re Stressed

Encouraging Curiosity in Kids

How do you help make your children scientifically literate? I think the biggest thing you can do is encourage curiosity.

One way to encourage curiosity it is by answering their questions (and not saying: I am too busy, don’t bother me, don’t ask me?, stop asking why…). I know adults are busy and have all sorts of stuff we are trying to get done; and the question about why I need to wash my hands doesn’t seem worth answering. But I think anytime a kid is asking why is an opportunity to teach and encourage them to keep being curious.

It is very easy to shut off this curiosity, in our society anyway (we do it to the vast majority of people). The biggest difference I see between adults and kids is not maturity or responsibility but curiosity (or lack thereof in adults) and joy (versus adults who seem to be on valium all the time – maybe they are).

As they grow up kids will have lots of science and technology questions that you don’t know the answers to. If you want them to be curious and knowledgeable, put in the effort to find answers with them. You have to help them find the answers in a way that doesn’t turn them off. If you just say – go look it up yourself (which really they can do), maybe the 2% that are going to become scientists will. But most kids will just give up and turn off their curiosity a little bit more (until eventually it is almost gone and they are ready to fit into the adult world). Which is very sad.

Once you get them used to thinking and looking things up they will start to do this on their own. A lot of this just requires thinking (no need to look things up – once a certain base knowledge is achieved). But you need to set that pattern. And it would help if you were curious, thought and learned yourself.

Photo of kids intently studying on a Malaysian beach

My mom with a group of Malaysia kids apparently intent on learning something. I am there, but not visible in this photo. Photo by my father.

While walking in the park, see one of those things you are curious about and ask why does…? It is good to ask kids why and let them think about it and try and answer. Get them in the habit of asking why themselves. And in those cases when no-one knows, take some time and figure it out. Ask some questions (both for yourself – to guide your thinking – and to illustrate how to think about the question and figure things out). If you all can’t find an explanation yourselves, take some time to look it up. Then at dinner, tell everyone what you learned. This will be much more interesting to the kids than forcing them to elaborate on what they did today and help set the idea that curiosity is good and finding explanations is interesting.

It is fun as a kid if your parent is a scientist or engineer (my father was an engineering professor).

You often don’t notice traits about yourself. In the same what I know what red looks like to me, I figure we both see this red shirt you see the red that I do. But maybe you don’t. I tend to constantly be asking myself why. If I see something new (which is many, many times a day – unless I am trapped in some sad treadmill of sameness) I ask why is it that way and then try and answer. I think most of this goes on subconsciously or some barely conscious way. I actually had an example a few months ago when I was visiting home with my brother (who is pretty similar to me).

As we were driving, I had noticed some fairly tall poles that seemed to have really small solar panels on top. I then noticed they were space maybe 20 meters apart. Then saw that there seemed to be a asphalt path along the same line. I then decided, ok, they are probably solar panels to power a light for the path at night. Then my brother asked why are there those small solar panel on top of that pole?

Continue reading

Career Prospect for Engineers Continues to Look Positive

As I have written previously the career prospects for engineers are bright around the globe. Many countries realize the importance of engineering and have taken steps to compete as a center of excellence for engineering. It is a smart economic policy. Ironically, the USA, that did such a great job at this in the 1960’s and 1970’s, has been falling down in this regard. A significant reason for this is the USA can only fund so many things and a broken health care system, military complex, bailouts to bankers (trust fund babies and others) cost a lot of money. You chose what to fund, and those are taking much of the available USA funds. There are also non-economic reasons, such as the turn in the last decade in the USA to make the barriers for foreigner engineers (and others) to go through to go to school, visit and stay in the USA have all increased dramatically.

Back to the prospects for engineers: their are shortages of good engineers all over (and the future projections don’t show any reason to believe this will change). Germany Faces a Shortage of Engineers:

In June, the Association of German Engineers (VDI) reported that there were 76 400 vacant engineering jobs—an all-time high.

Policymakers in Berlin have responded to the shortage of skilled workers with a number of measures, including changes in immigration rules that allow German companies to hire engineers from other countries, including those outside of the European Union. Among them: The annual salary that companies must pay foreigners has been lowered from 60,000 Euro (US $95,000) to 40,000 Euro, which is roughly the starting salary of an engineering graduate in Germany…

To make it easy for engineers to move around Europe, engineering associations and other groups across Europe are working with the European Commission (the executive arm of the European Union) to launch the new Engineering Card. The card, which German engineers can apply for now and other countries are planning to launch, provides standardized information about the engineer’s qualifications and skills for greater transparency.

“We don’t expect many engineers will come, because among other reasons, there is a shortage of engineers across Europe,”

Related: Engineering Again Dominates The Highest Paying College Degree ProgramsS&P 500 CEO’s: Engineers Stay at the TopChina’s Technology Savvy LeadershipEngineers: Future ProspectsEconomic Strength Through Technology Leadership

Continue reading