Currently browsing the Products Category

Posts about cool products including high tech gadgets, appropriate technology solutions and possible products in the future. Recommended posts: Lego Learning (mindstorms) - Lifestraw - Video Goggles - Wakamaru Robot - Re-engineered Wheelchair

Toyota’s Newest Humanoid Partner Robot

T-HR3 reflects Toyota’s broad-based exploration of how advanced technologies can help to meet people’s unique mobility needs. T-HR3 represents an evolution from previous generation instrument-playing humanoid robots, which were created to test the precise positioning of joints and pre-programmed movements, to a platform with capabilities that can safely assist humans in a variety of settings, such as the home, medical facilities, construction sites, disaster-stricken areas and even outer space.

“The Partner Robot team members are committed to using the technology in T-HR3 to develop friendly and helpful robots that coexist with humans and assist them in their daily lives. Looking ahead, the core technologies developed for this platform will help inform and advance future development of robots to provide ever-better mobility for all,” said Akifumi Tamaoki, General Manager, Partner Robot Division.

T-HR3 is controlled from a Master Maneuvering System that allows the entire body of the robot to be operated instinctively with wearable controls that map hand, arm and foot movements to the robot, and a head-mounted display that allows the user to see from the robot’s perspective. The system’s master arms give the operator full range of motion of the robot’s corresponding joints and the master foot allows the operator to walk in place in the chair to move the robot forward or laterally. The Self-interference Prevention Technology embedded in T-HR3 operates automatically to ensure the robot and user do not disrupt each other’s movements.

Onboard T-HR3 and the Master Maneuvering System, motors, reduction gears and torque sensors (collectively called Torque Servo Modules) are connected to each joint. These modules communicate the operator’s movements directly to T-HR3’s 29 body parts and the Master Maneuvering System’s 16 master control systems for a smooth, synchronized user experience.

Learn more on Toyota’s news site.

Related: Toyota Develops Thought-controlled Wheelchair (2009)Robots for Health Care from Toyota (2017)Toyota Human Support Robot (2012)Lexus Has Built a Working Hoverboard (2015)

Simple and Cheap Security Camera with 2 Way Audio and Backup to Cloud via Wifi

This is a cool product at a very reasonable price: $30.

The device offers a 1080p HD smart home camera with 14 days of free rolling cloud storage, wide-angle lens, two-way audio and the ability to send alerts to your phone. You setup the device to use a local wifi network and control it via a smartphone application.

I have long wanted such a product (they have been available for a few years but haven’t been cheap) and now they are available at a great price. The main drawback I see is that it requires a power connection (it doesn’t have a battery option). So setting it up as a doorbell is a bit of an issue (you have to get power to it somehow).

Order your camera. Learn more about the device from Wyzecam

Related: Camera Trap Images of Very Rare Wild CatsAnswer Your Doorbell with Your Smartphone Wherever You Are (and see video of who is at the door) (from 2015Video Cat CamCanon PowerShot SX60 HS Digital Camera

Building a Network of Tunnels Underground to Ease the Flow of Traffic

Guest post by Aron Alba

“Roads must go 3D” – Elon Musk

The Boring company plans to build the network of tunnels under the ground in order to combat traffic congestions all over United States. As seen in their presentation video, the idea is to construct a system of tunnels in which electric vehicles autonomously zip around cars, people and cargo transport in high speed under the surface (like a scene from a science fiction movie).

The ride would begin with the lift that lowers the vehicles from the surface into the tunnel system. These lifts could be a possible bottleneck for the entire system, but it may be the best solution. To secure the vehicle to the autonomous pod and possibly select the end destination would take some time anyways, so this transition into the tunnel system could go unnoticed. Pods could travel at higher speeds than those allowed for the human driver, since the system is autonomous and completely monitored. The scenery wouldn’t be much though, so probably not the most interesting ride, but certainly fast.

Why build a tunnel network in the first place?
Traffic congestion is a very common nuisance in american lives. With the problem just getting worse. In order to solve this problem you have to build more roads or have fewer cars on them with arranging a better public transport. The land for the roads is scarce. The alternative of going up using drones to fly people around may not become possible due to safety concerns in a long time. Where to go then? Underground.

This has not been done before for obvious reasons, it is really expensive. The most expensive roads to build are tunnels and bridges. Tunnels have even more problems the larger they get. With people driving inside of them there needs to be proper ventilation to get rid of the carbon-monoxide. Resting stops for people. Great deal of risk with so many people driving inside a closed tunnel. The subway system is one solution to many of these problems. Except subways lack the flexibility and require substantially more infrastructure.

Elon Musk’s big plan is to use the technology that his other company Tesla already has developed. Instead of trains like in a subway system, Musk plans to have autonomous pods that run on battery power to zip along the tunnels. This has several advantages. First the battery powered pods to not require power lines to be continuously run through the tunnel like the train does, this saves on the costs of the tunnel. Also since the pods will be autonomous, this saves on personnel needed to operate the system. But probably the smartest idea behind the Boring company’s plans is to build a tunnel with a smaller bore diameter. Probably large enough to fit a pod with a largest planned Tesla vehicle but certainly smaller than the current tunnels for trains.

The Boring company plans to build the tunnel network using a tunnel boring machines. These machines are massive systems build to bore tunnels with circular cross section. They consist of cutting head system, a system for removing earth, systems for advancing the cutting head, systems for laying the concrete walls around the bore. At the end these machines leave a tunnel pretty much ready to use.

Continue reading

Drone Deliveries to Hospitals in Rwanda

Partnering with the Government of Rwanda, Zipline serves 21 hospitals nation-wide. They provide instant deliveries of lifesaving blood products for 8 million Rwandans.

Their drones are tiny airplanes (instead of the more common tiny helicopter model). Supplies are delivered using parachute drops from the drone. Landings are similar to landings on aircraft carriers (they grab a line to help slow down the drone) and, in a difference from aircraft carrier landings, the drone line drops them onto a large air cushion.

Zipline Muhanga Distribution Center launched in October 2016 making Rwanda the first country to integrate drones into their airspace and to begin daily operations of autonomous delivery.

As of May 2017, Zipline had completed over 350 delivery flights to real hospitals and their pace is accelerating. Zipline can cut delivery time from 4 hours to 15 minutes (which is extremely important in time critical health care emergencies).

I wrote in 2014 about the huge potential for drone delivery of medical supplies. It is wonderful to see Zipline improving people’s lives with their effort.

Related: Inspirational Engineer, William Kamkwamba from Malawi (2008)Using Rats to Sniff Out TBUS Fish and Wildlife Service Plans to Use Drones to Drop Vaccine Treats to Save FerretsWater Wheel

Continue reading

Small Farm Robots

The IdaBot was created by researchers at Northwest Nazarene University (Idaho, USA).

Using robots in farming is limited today but the future could see a huge growth in that use. Benefits of introducing more robots to farming include reducing the use of pesticides and chemicals to control weeds.

Reducing labor costs is also a potential benefit but at current market prices (due to high costs of robotics and available cheap labor) that is more something for the future than today. However that can change fairly quickly – as for example the collapse in solar panel costs have made solar energy economically very attractive. In areas with high labor costs (Japan etc.) or areas where there are active efforts to reduce the supply of labor (in the USA where a significant portion of labor does not have proper visa to work in the USA and the current administration is seeking to reduce that labor availability) robots become more attractive economically.

Robot farmers are coming to a field near you

In Japan, using robots to harvest strawberries is roughly cost-equivalent to human labor if the ‘bots are shared between multiple farms, Lux Research said.

“With strawberry-picking being slow and labor-intensive, and labor scarce and expensive — the average agricultural worker in Japan is over 70 years old – the robot is quickly likely to become the cheaper option,” it said.

Lux Research also forecast European lettuce-growing — a major industry on the continent — would become automated by 2028.

“Automated lettuce weeding is already competitive with human labor in Europe, thanks to regulatory limitations on agrochemicals. Lettuce thinning is still accomplished manually at lower cost, but robots are likely to reach breakeven with human labor in 2028,”

The global market for agricultural robots will explode to $73.9 billion by 2024, up from $3.0 billion 2015

Related: For Many Crops Ants Can Provide Pest Protection Superior or Equal to Chemicals at a Much Lower CostSustainable Ocean FarmingCool Robot Locomotion: Transforms from Wheeled to Walking For Stairs and Rough Terrain (2012)Lean Science: Using Cheap Robots to Aid ResearchMoth Controlled Robot (2009)

14 Year Old Signs $700,000 MOU for a Drone to Detect and Defuse Land Mines

Harshwardhan Zala, from Gujarat, India has signed an agreement worth Rs. 5 crore (US$733,940) to explore the possibility of commercial production of a drone created by him which can help in detecting and defusing landmines.

Harshwardhan started work on the prototype of the landmine-detecting drone last year after reading in newspapers about high army casualties due to landmines. Aerobotics7 is the company founded by the 14 years old.

Harshwardhan Zala, 14-year-old trends for Rs 5 crore deal at Vibrant Gujarat Global Summit 2017!

Explaining more about the drone, the zealous 14-year-old said, “The drone is designed to send out waves that cover eight sq. mt area while flying two feet above the surface; the waves detect land mines and communicate their location with a base station. The drone also carries a bomb weighing 50 gram that can be used to destroy the landmine.” Harshwardhan Zala’s proud father Pradhyumansinh is an accountant with a plastic company in Naroda, and his mother Nishaba is a homemaker.

[missing video – removed 🙁 ]

The video has Harshwardhan speaking a bit of English but mainly some other language that I don’t understand. If I understand right, his drone is 98% accurate at identifying mines (where the current solutions are 92% accurate – and much more dangerous for those having to walk around testing). His solution is 17 times faster and 22 times cheaper than the current solutions. Once the mine is detected by the drone through an infrared sensor, a 50 gram detonator will complete the task of defusing it (blowing it up).

This video shows a bit of the drone itself (non-English audio)

Continue reading

Pepper – A Social Robot from Softbank

Pepper is a social robot developed in France and part of the Japanese conglomerate Softbank.

Pepper robots are at work in retail stores in Asia and Europe as sales associates. The first personal robots have been available in Japan for 2 years now and may be available elsewhere soon.

Continue reading

Autonomous Delivery Robots Launched in Europe and USA

Starship Technologies is launching a fleet of autonomous delivery robots on the pavements of the United Kingdom, Germany and Switzerland as part of the testing program. A similar program will be announced for the United States shortly.

The largest European food delivery company Just Eat, leading German parcel delivery company Hermes, leading German retailer Metro Group, and innovative London food delivery startup Pronto will test the delivery robots developed by Starship Technologies, a company launched in 2014 by Skype co-founders.

a starship robot at Branderburg Gate, Berlin

Starship delivery robot, Branderburg Gate, Berlin, Germany

As part of the program, dozens of robots will be deployed in five cities to run first test deliveries and introduce the innovative devices to the general public.

“By launching partnerships with major companies we will enter the next phase in our development. While Starship has been testing the robots in 12 countries in the last nine months, we will now develop know-how on running real robotic delivery services,” said Ahti Heinla, co-founder, CEO and CTO of Starship Technologies.

Robots developed by Starship Technologies are meant for delivering packages, groceries and food to consumers in a 2-3 mile radius. The robots can drive autonomously while being monitored by human operators in control centers. Introduced to European and American cities since the end of last year, the robots have already driven close to 5,000 miles and met over 400,000 people without a single accident.

Frank Rausch, CEO of Hermes Germany, said: “We are very proud to be Starship’s exclusive logistics partner in Germany. At Hermes we believe that parcel delivery’s main goal is to fully satisfy the customers’ needs in receiving their online shopping orders as fast and convenient as possible. Nobody likes to spend hours waiting for the courier just to have a parcel delivered. Therefore, individually scheduled delivery services will become increasingly important within the coming years.”

The test programs will run in London, Düsseldorf, Bern and another German city to start, before moving to several other European and American cities. Starship Technologies will also continue testing in Tallinn, Estonia where its R&D facilities are located.

Related: Using Drones to Deliver Medical Supplies in Roadless Areas (2014)Self Driving Cars Have Huge Potential for Benefit to Society (2014)Autonomous Helicopters Teach Themselves to Fly (2008)Toyota Develops Thought-controlled Wheelchair (2009)

Concrete Tent

This shows a cool engineering innovation: canvas-like material that when it is saturated with water will set (over 5+ hours) into hard concrete. In this example a “tent” with regular doors is covered with water and inflated. After setting it hard enough to climb on top of.

The manufacturer’s site has move information.

Related: Concrete pre-fad Houses 1919 and 2007Easy to Assembly Off-the-grid TownsResearch on Ancient Roman Concrete Will Allow the Creation of More Durable and Environmentally Friendly ConcreteUW- Madison Wins 4th Concrete Canoe Competition

Bitbeam: Open Source Hardware Prototyping Platform

Bitbeam is an open source construction toy/hardware prototyping platform. A collection of LEGO Technic compatible parts (beams) which can be combined to construct whatever contraption the user has thought up.

The Bitbeam project aims to define a set of parts which the users themselves can produce using increasingly available technologies for local fabrication like 3D printers, laser cutters and CNC mills.

view of various piece of 3d printed items

Tapster is a robot that automates mobile application checking on a smartphone. It is built using bitbeam.

The latest post on the Bitbeam web site is from 2013 but it seems it is still an active project (it would be nice if they update the site).

Please add a comment if you now of updated information or of similar open source projects.

Related: Open Source Ecology: Using Open Engineering to Create Economic BenefitArduino Introduction Video Tutorial3D Printing at Home: Today, Challenges and OpportunitiesIntroduction Video on 3D PrintingLego Mindstorms Robots Solving: Sudoku and Rubik’s Cube (2009)

Sustainable Ocean Farming

Farming the Sea: why eating kelp is good for you and good for the environment

There are serious problems with our ability to grow healthy food for the number of people we have today (and will have in the future). Innovations have allowed us to feed ourselves. But the damage done to topsoil and other damage including pollution of our rivers is huge. Overfishing and factory farms are keeping us going today but are doing immense damage and are not sustainable.

Seed companies abusing the corrupt government patent systems creates even more damage. We need better solutions. We have many people doing great things but we need to do much more. Ocean farming is one of many areas we should expand. And we should greatly reduce the use of factory farms, antibiotics for livestock, overfishing and the overuse of pesticides.

How an Army of Ocean Farmers are Starting an Economic Revolution

So we all went on a search for sustainability. I ended up in Northern Canada on an aquaculture farm. At that point aquaculture was supposed to be the great solution to overfishing, but when I got there I found more of the same, only using new technologies to pollute local waterways with pesticides and pumping fish full of antibiotics.

I never thought climate change had anything to do with my life. But it does. From my vantage point, climate change is not an environmental issue at all”Š—”Šit’s an economic issue.

As ocean farmers, we reject aquaculture’s obsession with monoculture, an obsession similar to that of modern land farming. Our goal is diversity. It’s a sea-basket approach:We grow two types of seaweeds, four kinds of shellfish, and we harvest salt. But with over 10,000 edible plants in the ocean, we’ve barely scratched the surface.

Instead of repeating history we’re building infrastructure from seed-to-harvest-to-market. We’re starting nonprofit hatcheries so that our farmers can access low-cost seed. We’re creating ocean seed banks so that the Monsantos of the world can’t privatize the source of our food and livelihoods.

Related: SelFISHingThe State of the Oceans (2011)Rethinking the Food Production System (2008)

  • Recent Comments:

    • Alex: This is certainly the future. It is hart warming to see developing countries benefiting from such...
    • Donnie S. Willson: Underground tunnel is a good idea for traffic managment.i really appreciate it.
    • Richard Hopp: Awesome blog post, love the biodiversity. Really excited after watching this video, since I...
    • Robbie Miller: How fantastic, not only a great subject to study, but to be able to travel the world too....
    • Jaspal Singh: Japan has an edge when it comes to humanoid robots. No doubt in few more year, you will find...
    • Marcus Williams: This is actually a marvelous piece of engineering. Kudos for sharing!
    • M Zeeshan Haider: You are so interesting! I don’t believe I’ve truly read through anything like...
    • Jaspal Singh: I fully agree to the post idea. The farming is a natural process and should be free from any...
  • Recent Trackbacks:

  • Links