The Curious Cat Science and Engineering blog explores: innovation, technology, research, education, economics, gadgets, health care and scientific inquiry.
I am curious, even skeptical, about the potential for hydrogen fuel cell versus battery passenger cars. I do respect Toyota and so am wondering if they do indeed see something that most others are missing.
The current production Toyota Mirai has a range of 650 km.
I do think hydrogen fuel cells may provide a better option for larger vehicles (maybe even shipping), but I have done next to no research on this so I may be wrong.
It seem unlikely to me that hydrogen fuel cell passenger cars are going to make it but I would be happy to be wrong. Perhaps the advantages will overcome what seem to me to be challenges that are going to prevent them from being successful. I am confused about how committed to this strategy Toyota is (which makes me question my belief that hydrogen fuel cell passenger cars are not going to be successful).
Last year 920,000 children under the age of five died of pneumonia, making it the leading killer of people in that age group. This figure is falling (in 2011 it was 1.2m), but it still represents 16% of all infant deaths. Such deaths are not, however, evenly distributed. In Bangladesh pneumonia causes 28% of infant mortality.
…
Dr Chisti says that, as well as saving lives, his device has cut the hospital’s spending on pneumonia treatment by nearly 90%. The materials needed to make his version of a bubble-CPAP ventilator cost a mere $1.25. The device also consumes much less oxygen than a conventional ventilator. In 2013 the hospital spent $30,000 on supplies of the gas. In 2017 it spent $6,000.
Efforts are underway to test this innovation and spread the adoption of this appropriate technology solution to other poor countries. It is wonderful to see engineering innovation making such important improvements in health care around the world.
T-HR3 reflects Toyota’s broad-based exploration of how advanced technologies can help to meet people’s unique mobility needs. T-HR3 represents an evolution from previous generation instrument-playing humanoid robots, which were created to test the precise positioning of joints and pre-programmed movements, to a platform with capabilities that can safely assist humans in a variety of settings, such as the home, medical facilities, construction sites, disaster-stricken areas and even outer space.
“The Partner Robot team members are committed to using the technology in T-HR3 to develop friendly and helpful robots that coexist with humans and assist them in their daily lives. Looking ahead, the core technologies developed for this platform will help inform and advance future development of robots to provide ever-better mobility for all,” said Akifumi Tamaoki, General Manager, Partner Robot Division.
T-HR3 is controlled from a Master Maneuvering System that allows the entire body of the robot to be operated instinctively with wearable controls that map hand, arm and foot movements to the robot, and a head-mounted display that allows the user to see from the robot’s perspective. The system’s master arms give the operator full range of motion of the robot’s corresponding joints and the master foot allows the operator to walk in place in the chair to move the robot forward or laterally. The Self-interference Prevention Technology embedded in T-HR3 operates automatically to ensure the robot and user do not disrupt each other’s movements.
Onboard T-HR3 and the Master Maneuvering System, motors, reduction gears and torque sensors (collectively called Torque Servo Modules) are connected to each joint. These modules communicate the operator’s movements directly to T-HR3’s 29 body parts and the Master Maneuvering System’s 16 master control systems for a smooth, synchronized user experience.
Mitochondrial replacement seeks to remove genes known to cause genetic defects from embryos in order to allow for a baby to avoid inheriting the defect.
Accordingly, the committee recommends that any initial MRT clinical investigations focus on minimizing the future child’s exposure to risk while ascertaining the safety and efficacy of the techniques. The recommended restrictions and conditions for initial clinical investigations include
limiting clinical investigations to women who are otherwise at risk of transmitting a serious mtDNA disease, where the mutation’s pathogenicity is undisputed, and the clinical presentation of the disease is predicted to be severe, as characterized by early mortality or substantial impairment of basic function; and
transferring only male embryos for gestation to avoid introducing heritable genetic modification during initial clinical investigations.
Following successful initial investigations of MRT in males, the committee recommends that FDA could consider extending MRT research to include the transfer of female embryos if clear evidence of safety and efficacy from male cohorts, using identical MRT procedures, were available, regardless of how long it took to collect this evidence; preclinical research in animals had shown evidence of intergenerational safety and efficacy; and FDA’s decisions were consistent with the outcomes of public and scientific deliberations to establish a shared framework concerning the acceptability of and moral limits on heritable genetic modification.
The research in this area is interesting and our ability to help achieve healthy lives continues to grow. The path to a bright future though is not without risk. It requires careful action to pursue breakthrough improvements while minimizing the risks we take to achieve better lives for us all.
Earlier this month, a study published in Nature by Shoukhrat Mitalipov, head of the Center for Embryonic Cell and Gene Therapy at the Oregon Health and Science University in Portland, suggested that in roughly 15 percent of cases, the mitochondrial replacement could fail and allow fatal defects to return, or even increase a child’s vulnerability to new ailments.
The findings confirmed the suspicions of many researchers, and the conclusions drawn by Mitalipov and his team were unequivocal: The potential for conflicts between transplanted and original mitochondrial genomes is real, and more sophisticated matching of donor and recipient eggs — pairing mothers whose mitochondria share genetic similarities, for example — is needed to avoid potential tragedies.
“This study shows the potential as well as the risks of gene therapy in the germline,” Mitalipov says. This is especially true of mitochondria, because its genomes are so different than the genomes in the nucleus of cells. Slight variations between mitochondrial genomes, he adds, “turn out to matter a great deal.”
Doctors at Nicklaus Children’s Hospital in Miami used the device to map out an operation they say they couldn’t have envisioned otherwise.
…
“It was mind-blowing,” says Cassidy Lexcen, the baby’s mother. “To see this little cardboard box and a phone, and to think this is what saved our daughter’s life.”
Google Cardboard is a virtual reality and augmented reality platform developed by Google for use with a head mount for smart phone. Just get a simple cardboard holder you wear like goggles and an app for Android or iOS and you can view cool 3d virtual realities.
The first recorded salt well in China was dug in Sichuan Province, around 2,250 years ago. This was the first time water well technology was applied successfully to the exploitation of salt, and marked the beginning of Sichuan’s salt drilling industry. From that point on, wells in Sichuan have penetrated the earth to tap into brine aquifers, essentially ground water with a salinity of over 50g/l. The water is then evaporated using a heat source, leaving the salt behind.
…
At some point around 2,000 years ago the leap from hand and shovel dug wells to percussively drilled ones was made. By the beginning of the 3rd century AD, wells were being drilled up to 140m deep. The drilling technique used can still be seen in China today, when rural farmers drill water wells. The drill bit is made of iron, the pipe bamboo. The rig is constructed from bamboo; one or more men stands on a wooden plank lever, much like a seesaw, and this lifts up the drill stem a metre or so. The pipe is allowed to drop, and the drill bit crashes down into the rock, pulverizing it. Inch by inch, month by month, the drilling slowly progresses.
…
A major breakthrough was achieved around 1050 AD, allowing deeper wells, when solid bamboo pipe was replaced by thin, light, flexible bamboo “cable”. This dramatically lowered the weight that needed to be lifted from the surface, a weight that increased with the depth being drilled. By the 1700s Sichuan wells were typically in the range of 300 – 400m deep
…
One bamboo pipe line would take away the brine, and others the gas. The 2,000 year plus Sichuan salt industry has drilled approximately 130,000 brine and gas wells, and 10% of those were in the immediate Zigong area. Zigong has a cumulative gas production over this period of over 30 billion cubic metres. The area continues to be a major salt producer, and many of the historical wells are still in production.
An ancient sketch originally from “The Annals of Salt Law of Sichuan Province”. A “Kang Pen” drum is seen in the centre foreground, with gas pipes directly feeding the salt stoves on the right. At the top, brine from a remote well is being carried in buckets by men, who feed it into a bamboo pipeline that runs down to the stoves. One of the carriers is being paid at top left, and it appears that a blow out is depicted on a new well being drilled. (from Zhong & Huang)
As recently as the 1950s there was still over 95km of bamboo pipeline in operation in the Zigong area.
Dr. Vishal Rao, a Bangalore based oncologist, has developed a voice prosthesis that can help throat cancer patients speak after surgery. And unlike the extremely expensive ones available in the market today, this device will cost just Rs. 50. [$US 1]
We need to keep developing cost effective solutions to provide for the needs of billions of people around the world. It is great to see appropriate technology solutions at work making people’s lives better.
This new attempt to produce cars powered by compressed air has an innovative design with a joystick instead of a drivers wheel. The AirPod is being developed in France. Compressed air has been used to power trams in France since the 19th century.
The AirPod has a range of 150 to 200 km and a top speed for 80 km per hour. The cost will be about US$10,000.
They claim the cost per mile is about 1/3rd of that for electric vehicles. It is nice that we have engineers around the globe continually working on new uses of technology to provide us better options for living.
I hope such cars can be a success. It does seem to me electric cars seem the more likely large scale success but it is good to have people seeking out innovative solutions.
This webcast, from the wonderful SciShow, explores how we discovered fluoride helps prevent tooth decay and how we then used that knowledge and finally discovered why it worked.
I love stories of how we learn for observing what is happening. We don’t always need to innovate by thinking up creative new ideas. If we are observant we can pick up anomalies and then examine the situation to find possible explanations and then experiment to see if those explanations prove true.
When working this way we often are seeing correlation and then trying to figure out which part of the correlation is an actual cause. So in this dental example, a dentist noticed his patients had bad brown stains on their teeth than others populations did.
After investigation the natural fluoridation of the water in Colorado Springs, Colorado, USA seemed like it might be an explanation (though they didn’t understand the chemistry that would cause that result). They also explored the sense that the discolored teeth were resistant to decay.
Even without knowing why it is possible to test if the conditions are the cause. Scientists discovered by reducing the level of fluoridation in the water the ugly brown stains could be eliminated (these stains took a long time to develop and didn’t develop in adults). Eventually scientists ran an experiment in Grand Rapids, Michigan and found fluoridation of the water achieved amazing results for dental health. The practice of fluoridation was then adopted widely and resulted in greatly improved dental health.
In 1901, Frederick McKay, a recent dental school graduate, opened a dental practice in Colorado Springs, Colorado. He was interested in what he saw and sought out other dentists to explore the situation with him but had little success. In 1909, he found some success when renowned dental researcher Dr. G.V. Black collaborate with him.
Dr. H. Trendley Dean, head of the Dental Hygiene Unit at the National Institute of Health built on their work when he began investigating the epidemiology of fluorosis in 1931. It wasn’t until 1945 that the Grand Rapids test started. Science can take a long time to move forward.
Only later did scientists unravel why this worked. The fluoride reacts to create a stronger enamel than if the fluoride is not present. Which results in the enamal being less easily dissolved by bacteria.
Health tip: use a dental stimudent (dental picks) or floss your teeth to maintain healthy gums and prevent tooth decay. It makes a big difference.
Self-driving cars was something that seemed very far-fetched when I first read Google was seriously investing in pursuing that idea as a commercially viable product (Google’s Self Driving Car – 2010 post). I quickly became convinced they were right. I still think it is questionable if they will succeed (the political issues may well be even more difficult than technical ones). But the chances of success seem reasonable and the investment in research could provide a huge payoff.
Google’s self driving cars have driven 700,000 miles without an accident already; which is amazing. Warren Buffett stated that “self-driving cars are a real threat to the car insurance business” (His company owns the GIECO car insurance company) at the 2014 Berkshire Hathaway shareholder meeting in Omaha.
There are some people, stressing that this is not ready for mass market use. They are right. But, I think it is funny to see people thinking that a very early stage huge innovation in transportation not being ready today is a reasonable criticism. I am amazed that this huge innovation may actually be available before 2020. That would be incredible.
Certainly even then it will have limitations. And certainly there will be accidents. The current transportation system with humans driving cars has thosands of accidents a day and tens of thousands of deaths a year in the USA alone every year. Every year 1.2 million people die worldwide in traffic-related incidents, and over 90% of those accidents are due to human error.
Researchers at the Stanford University School of Medicine have developed two inexpensive adapters that enable a smartphone to capture high-quality images of the front and back of the eye. The adapters make it easy for anyone with minimal training to take a picture of the eye and share it securely with other health practitioners or store it in the patient’s electronic record.
The researchers see this technology as an opportunity to increase access to eye-care services as well as to improve the ability to advise on patient care remotely.
The standard equipment used to photograph the eye is expensive — costing up to tens of thousands of dollars — and requires extensive training to use properly. Primary care physicians and emergency department staff often lack this equipment, and although it is readily available in ophthalmologists’ offices, it is sparse in rural areas throughout the world.
“Adapting smartphones for the eye has the potential to enhance the delivery of eye care — in particular, to provide it in places where it’s less accessible,” said Myung. “Whether it’s in the emergency department, where patients often have to wait a long time for a specialist, or during a primary-care physician visit, we hope that we can improve the quality of care for our patients, especially in the developing world where ophthalmologists are few and far between.”
“A picture is truly worth a thousand words,” he added. “Imagine a car accident victim arriving in the emergency department with an eye injury resulting in a hyphema — blood inside the front of her eye. Normally the physician would have to describe this finding in her electronic record with words alone. Smartphones today not only have the camera resolution to supplement those words with a high-resolution photo, but also the data-transfer capability to upload that photo securely to the medical record in a matter of seconds.