The Curious Cat Science and Engineering blog explores: innovation, technology, research, education, economics, gadgets, health care and scientific inquiry.
The video explains how to build a basic circuit with the Arduino board, and how to use each of the basic components such as LEDs, switches, and resistors. See more videos on related topics. Massimo Banzi, the co-creator and CEO of Arduino, and seen in the videos, also has a book: Getting Started with Arduino.
Schematic diagrams are made up of two things: symbols that represent the components in the circuit, and lines that represent the connections between them.
…
If a line runs between components, it means that they are connected, period, and it tells you nothing else. The connection can be a wire, a copper trace, a plug-socket connection, a metal chassis, or anything else that electricity will run through without much resistance. Messy details like wire or cable specifications and routing, if they are important for a project, belong elsewhere in its documentation. The length of a line also has nothing to do with the connection’s actual distance in real life. Schematics are drawn (ideally) to be clear and simple, with components and connections arranged on the page to minimize clutter, not to represent how they might be placed on a circuit board.
The video and the article give you a good start on understanding schematics. There are 2 ways to show wires crossing in a schematic (the video shows one, the article shows both). Learning how to read a schematic gives you the ability to go many different directions with your home engineering efforts. Have fun.
This idea is a bit scary to me, the self driving car is less so. But it is great to see us pushing the engineering boundaries forward. It is such a shame that the huge economic failures in the USA, Europe and Japan are rightly grabbing much of the attention these days. If we just reduced the waste and corruption in the political and financial systems it would allow us to take more joy is the great time we do for awesome engineering breakthroughs. Still, if we can try to block out those painful economic realities, these types of breakthroughs are really cool.
The webcast shows the work of the Artificial Intelligence Group of the Freie Universität Berlin in Germany (BrainDriver).
Norbert Müller’s group has received $2.5 million from the U.S. Department of Energy Advanced Research Projects Agency-Energy (ARPA-E) in 2010 to build and develop the wave disk engine, which uses turbo combustion “shock wave” technology to convert either liquid fuel or compressed natural gas or hydrogen into electrical power. With this engine, fuel efficiency for hybrid vehicles could increase 5 times compared to internal combustion engine vehicles on the road today (and 3.5 times less than current hybrid cars), while reducing costs by 30%. The goal of Müller’s team is to produce an engine that would give hybrid vehicles a 500-mile driving range and reduce carbon dioxide emissions by as much as 90%.
In the video he says they hope to have the engines in production vehicles within 3 years. My guess is he is being quite optimistic, but we will see. The new engine would allow 1,000 pounds to be removed from the weight of cars (by removing the need for drive train, radiator…).
I wrote about the Tinkering School, Engineering camp previously. I am a strong believer in the value of helping kids (even adult kids – the few that haven’t resigned themselves to limited capacity to wonder since they now are grown up and not suppose to waste their time dreaming) explore their ideas and assisting them in making those ideas into reality. I think this is the best way to learn, not learning to pass a test, but learning to gain knowledge and accomplish things. Here is a nice 15 minute talk by the founder of the Tinkering School, Gever Tulley: “Turning Curriculum Design On Its Head: Engage First Then Look for Learning Within”
The format of the tinkering school is week long sessions where the kids stay overnight.
Some quotes: “we would use real tools and real materials and we would build real things, not model building, [but instead] actual building.” “create a meaningful experience and learning will follow”
Gever Tulley recently published: Fifty Dangerous Things (You Should Let Your Children Do).
In this webcast IBM Fellow Grady Booch discusses the critical role engineering plays in moving society forward. And he explores the history of science and engineering. This interesting webcast would be a good video to show children, or anyone, to bring out the desire to study engineering and encourage them to study so they can join the many engineers shaping our world and our future.