Posts about animals

Cats Protect Newborns From Developing Asthma

Everyone should appreciate the value of cats (as we do, honoring cats in our blog’s name); yet some people seem oblivious to the greatness of cats. In another demonstration of what we gain by associating with cats, research has shown living with cats as newborns helps protect those with a specific gene variation from developing asthma.

Cats protect newborns against asthma

The results reveal that cats remove the increased risk of developing asthma among children with a particular variation of the gene 17q21, called TT, which has the strongest impact on whether or not a child could develop asthma.

Almost one in three children in the study carried the TT gene variant, regardless of whether or not their mother had asthma.

“it looks like the effect is linked to a particular gene-variant, which goes to show just how complex the development of asthma and allergies are. It’s not only about genes and the environment, but how the two interact, and there’s so much that we still don’t know,”

The research indicates that cats reduce the risk of childhood asthma, pneumonia, and bronchiolitis in genetically susceptible subjects.

And no, dogs do not provide this protection. As with most research the scientists have new paths of inquiry to follow based on these results. Lead author Jakob Stokholm suspects that the reasons cats have this effect but dogs do not, “could be related to the bacteria that cats carry and perhaps fungi or viruses that they bring into the home”. Those questions can be the topic of further research.

Related: Cat Allergy Vaccine Created (2011)Awesome Cat CamThe History of Domestic CatsParasites in the Gut Help Develop a Healthy Immune SystemHypoallergenic Cats (2006)The Amazing Reality of Genes and The History of Scientific Inquiry

Dr. Steve Goodman’s Work as a Field Biologist in Madagascar

Dr. Steve Goodman‘s work is a legendary Field Biologist and spends 9-10 months out of the year conducting research in other countries, with a focus on Madagascar for nearly 30 years. Learn more about the future of Madagascar’s biodiversity and research.

This video is from the great Brain Scoop channel with Emily Graslie; if you are not following that channel I highly recommend doing so for people interested in science.

Related: The Michael Jordan of Field BiologyInsect ArchitectureNew Life Form Found at South African Truck StopNeil Degrasse Tyson: Scientifically Literate See a Different World

Dogs and Wolves Share a Sense of Fair Pay

Dogs and wolves share sense of fair play

The scientists tested similarly raised dogs and wolves that lived in packs. Two animals of each species were placed in adjacent cages, equipped with a buzzer apparatus. When the dog or wolf pressed it with their paw, both animals got a reward on some occasions. Other times, the dog or wolf doing the task got nothing while the partner did.

The key finding was that when the partner got a high value treat, the animal doing the task refused to continue with it.

photo of a Gray Wold looking at the camera

Gray Wolf by Gary Kramer (USFWS), public domain

This is a similar result as that found with Capuchin monkeys that don’t like being paid less than others.

The question of social status or hierarchy also played an important role in the experiments with dogs and wolves of higher rank taking umbrage more quickly.

The human impact on dogs isn’t entirely absent though. Pet dogs are less sensitive to being treated unfairly – probably because of their experience with us!

It is fun to see these results mirror aspects of our psychology. It is fun to see how these experiments test out animal’s responses.

Related: Goats Excel at Learning and Remembering a Complex TasksRats Show Empathy-driven BehaviorInsightful Problem Solving in an Asian ElephantsHow Wolves Changed the Yellowstone Ecosystem

Elephants Learn to Cooperate to Reach Their Objective

This clip shows elephants learning to work together to achieve what they can’t achieve alone (from BBC’s Super Smart Animals). It is interesting to see what animals are capable of. See the related post links for more amazing animal behavior.

Related: Insightful Problem Solving in an Asian Elephant (2007)Crows can Perform as Well as 7 to 10-year-olds on cause-and-effect Water Displacement TasksBeehive Fence Protects Farms from ElephantsCapuchin Monkeys Don’t Like Being Paid Less Than Their PeersFriday Fun: Bird Using Bait to Fish

Insect Architecture

In this webcast The Brain Scoop takes an interesting look at the homes of eusocial animals and other insects. The video includes many interesting details including that adult weaver ants can’t produce the silk used to weave leaves together so they pick up their larva and use them like a glue stick.

Related: For Many Crops Ants Can Provide Pest Protection Superior or Equal to Chemicals at a Much Lower CostWhy Don’t All Ant Species Replace Queens in the Colony, Since Some DoSymbiotic relationship between ants and bacteriaHuge Termite Mound in Nigeria

We are Not Us Without The Microbes Within Us

I Contain Multitudes is a wonderful book by Ed Young on the microbes within us.

Time and again, bacteria and other microbes have allowed animals to transcend their basic animalness and wheedle their way into ecological nooks and crannies that would be otherwise inaccessible; to settle into lifestyles that would be otherwise intolerable; to eat what they could not otherwise stomach; to succeed against their fundamental nature. And the most extreme examples of this mutual assured success can be found in the deep oceans, where some microbes supplement their hosts to such a degree that the animals can eat the most impoverished diets of all – nothing.

This is another book exploring the wonders of biology and the complexity of the interaction between animals and microbes.

For hundreds of years, doctors have used dioxin to treat people whose hearts are failing. The drug – a modified version of a chemical from foxglove plants – makes the heart beat more strongly, slowly, and regularly. Or, at least, that’s what it usually does. In one patient out of every ten, digoxin doesnt’ work. Its downfall is a gut bacterium called Eggerthella lenta, which converts the drug to an inactive and medically useless form. Only some strains of E. lenta do this.

The complex interactions within us are constantly at work helping us and occasionally causing problems. This obviously creates enormous challenges in health care and research on human health. See related posts: Introduction to Fractional Factorial Designed Experiments, “Grapefruit Juice Bugs” – A New Term for a Surprisingly Common Type of Surprising Bugs and 200,000 People Die Every Year in Europe from Adverse Drug Effects – How Can We Improve?.

Every person aerosolized around 37 million bacteria per hour. This means that our microbiome isn’t confined to our bodies. It perpetually reaches out into our environment.

Avoiding bacteria is not feasible. Our bodies have evolved with this constant interaction with bacteria for millions of years. When we are healthy bacteria have footholds that make it difficult for other bacteria to gain a foothold (as does our immune system fighting off those bacteria it doesn’t recognize or that it recognized as something to fight).

A few pages later he discusses the problem of hospital rooms that were constantly cleaned to kill bacteria and largely sealed to reduce airflow. What happened is those bacteria the sick people had in them were the bacteria that were flourishing (the number of other bacteria to compete for space was small). Opening the windows to welcome the outside air resulted in better results.

Outdoors, the air was full of harmless microbes from plants and soils. Indoors, it contained a disproportionate number of potential pathogens, which are normally rare or absent in the outside world

Human health is a fascinating topic. It is true antibiotics have provided us great tools in the service of human health. But we have resorted to that “hammer” far too often. And the consequences of doing so is not understood. We need those scientists exploring the complex interactions we contain to continue their great work.

Related: People are Superorganisms With Microbiomes of Thousands of Species (2013)Bacteria are Always Living in Our Bodies (2014)Gut Bacteria Explored as Medical Treatment – even for Cancer

Backyard Wildlife: Large Lizards

large thin lizard

Close up of the large, thin, lizard

These photos were taken across the street from my condo in downtown Johor Bahru, Malaysia. From my window I could see Singapore.

It is at least a meter long from head to tail (probably longer, the tail is really long). Still it isn’t huge since it is very narrow (more like a very thick snake with legs than anything else).

A few months before seeing the lizard in the photos I saw a really big lizard 1 block from the Johor Bahru Customs Immigration and Quarantine complex. It was easily 2 meters long (head to end of the tail) and quite large (stout). It was a different species I am pretty sure.

I was standing for awhile looking at a cool patch of wild greenery. All of a sudden I heard a noise and looked down; this large lizard probably got tired of me standing so and moved quickly into the brush. I hadn’t seen it. I would guess it was sunning itself, before I wandered over. Too bad I didn’t have my camera ready.

Continue reading

Backyard Wildlife: Family of Raccoons

Mother raccoon with 3 babies

I took this photo of this mother Raccoon with 3 youngsters in my backyard. Raccoon’s are pretty big; it is somewhat amazing to me they manage to find enough to eat. I have seen individuals around over the years (not very often though) but only saw this family twice.

I continue to have many wildlife sightings in my backyard which is quite nice.

Related: Backyard Wildlife: FoxBackyard Wildlife: Great Spreadwing DamselflyRed-Shouldered HawkBackyard Wildlife: Turtle

Chimpanzees Solving Numerical Memory Test Better Than People

I can’t even see all the numbers before they disappear. But chimpanzees are shown seeing a flash of 9 numbers on a screen and then pointing to where they were on the screen in order from 1 to 9. Human test subjects can’t even do 5 numbers most of the time.

Related: Chimpanzees Use Spears to Hunt Bush BabiesOrangutan Attempts to Hunt Fish with SpearCrows can Perform as Well as 7 to 10-year-olds on cause-and-effect Water Displacement TasksTropical Lizards Can Solve Novel Problems and Remember the Solutions

Continue reading

Using Rats to Sniff Out TB

Apopo’s African giant pouched rats are being used to sniff out mines and TB

In the face of what the World Health Organisation is calling a global TB epidemic, an innovative tech startup named Apopo is attempting to reverse the harrowing statistics, using rodents to sniff out TB in cough and spit samples.

No ordinary lab rats, Apopo’s African giant pouched rats – affectionately named HeroRats – are extremely sensitive to smell, with more genetic material allocated to olfaction than any other mammal species. They are also highly social animals, and can be trained to communicate with humans.

I have written about these wonderful rats previously, Appropriate Technology: Rats Helping Humans by Sniffing Out Land Mines. As I have stated many time I especially enjoy engineering solutions that use affordable and effective methods to help everyone.

Photo of Hero-rat detecting TB in Mozambique with Apopo staff person

Hero-rat detecting TB in Mozambique

A DNA-screening device that takes up to two hours to analyse each individual sample with 95pc accuracy costs $17,000 and thousands more in upkeep. By contrast, a HeroRat costs $6,500 to train, can probe through hundreds of samples every hour [70-85% accuracy rate], and requires only food, water and cages for shelter.

Keep these innovations coming. The USA needs them also given the massively costly healthcare system in the USA.

The TB sniffing rat program was developed through Apopo in Tanzania.

Related: Rats Show Empathy-driven BehaviorBeehive Fence Protects Farms from ElephantsTuberculosis Risk (2007)Dangerous Drug-Resistant Strains of TB are a Growing Threat (2012)

US Fish and Wildlife Service Plans to Use Drones to Drop Vaccine Treats to Save Ferrets

Despite significant recovery successes, the black-footed ferret remains one of the most endangered animals in the world.

Black-footed ferret

Black-footed ferret, photo by J. Michael Lockhart, USFWS.

The U.S. Fish and Wildlife Service has developed a plan to use (UAS) to deliver prairie dog sylvatic plague vaccination.

The primary purpose in this proposal is to develop the equipment, protocols and experience in use of UAS (drones) to deliver oral sylvatic plague vaccine (SPV). It is anticipated that this approach, when fully developed, will offer the most efficient, effective, cost-conscious and environmentally friendly method to apply SPV annually over large areas of prairie dog colonies in support of black-footed ferret recovery.

Plague is a primary obstacle to black-footed ferret recovery. After more than 20 years of intensive reintroduction efforts across 27 reintroduction sites ranging from Mexico to Canada, approximately 300 ferrets were known to exist in the wild at the end of 2015. Ferrets are constantly threatened by plague outbreaks that affect both ferrets, and their primary prey and habitat provider, prairie dogs.

To date, SPV has been applied by hand with people walking pre-defined transects and uniformly dropping single SPV baits every 9-10 meters to achieve a deposition rate of 50 SPV doses per acre. Depending on vegetation and terrain, a single person walking can treat 3-6 acres per hour. All terrain vehicles (ATVs) have been considered but have various problems.

The bait treats are M&Ms smeared in vaccine-laden peanut butter.

Preliminary discussions with people experienced with UAS suggest an aerial vehicle travelling at a modest 9 meters per second could drop a single SPV bait once per second that would result in treating one acre every 50 seconds. If the equipment and expertise can be developed as proposed here, a single UAS operator could treat more than 60 acres per hour.

If the equipment can be developed to deposit 3 SPV doses simultaneously every second, as they envision is possible, some 200 acres per hour could be treated by a single operator. The idea is that the drone would fire the treats in 3 different directions to increase the spread of treats.

The areas to be treated are located in South Phillips County, Montana.

Related: Using Drones to Deliver Medical Supplies in Roadless Areas (2014)The sub-$1,000 unpiloted aerial vehicles UAV Project (2007)Autonomous Flying Vehicles (2006)Cat Allergy Vaccine Created (2011)AlienFly RC Mosquito Helicopter (2007)

  • Recent Comments:

    • Alex: This is certainly the future. It is hart warming to see developing countries benefiting from such...
    • Donnie S. Willson: Underground tunnel is a good idea for traffic managment.i really appreciate it.
    • Richard Hopp: Awesome blog post, love the biodiversity. Really excited after watching this video, since I...
    • Robbie Miller: How fantastic, not only a great subject to study, but to be able to travel the world too....
    • Jaspal Singh: Japan has an edge when it comes to humanoid robots. No doubt in few more year, you will find...
    • Marcus Williams: This is actually a marvelous piece of engineering. Kudos for sharing!
    • M Zeeshan Haider: You are so interesting! I don’t believe I’ve truly read through anything like...
    • Jaspal Singh: I fully agree to the post idea. The farming is a natural process and should be free from any...
  • Recent Trackbacks:

  • Links