Posts about Products

Toyota Mirai – Hydrogen Fuel Cell Electric Car

I am curious, even skeptical, about the potential for hydrogen fuel cell versus battery passenger cars. I do respect Toyota and so am wondering if they do indeed see something that most others are missing.

The current production Toyota Mirai has a range of 650 km.

I do think hydrogen fuel cells may provide a better option for larger vehicles (maybe even shipping), but I have done next to no research on this so I may be wrong.

It seem unlikely to me that hydrogen fuel cell passenger cars are going to make it but I would be happy to be wrong. Perhaps the advantages will overcome what seem to me to be challenges that are going to prevent them from being successful. I am confused about how committed to this strategy Toyota is (which makes me question my belief that hydrogen fuel cell passenger cars are not going to be successful).

Related: Toyota Engineering Development ProcessToyota Develops Thought-controlled WheelchairHow to Develop Products like Toyota (2011)Innovation at ToyotaElectric Cars (post on our blog in 2007)Toyota Scion iQ: 37 MPG (2011)Toyota Engineers a New Plant: the Living Kind (2005)

Protecting Cows with Lion Lights

It is wonderful to see what great things people accomplish to improve their lives using sensible, and fairly simple, engineering.

15 Year-Old Kenyan Prodigy, Richard Turere, Who Created “Lion Lights”

He fitted a series of flashing LED bulbs onto poles around the livestock enclosure, facing outward. The lights were wired to a box with switches and to an old car battery powered by a solar panel. They were designed to flicker on and off intermittently, thus tricking the lions into believing that someone was moving around carrying a flashlight.

The astonishing aspect of this is that Turere installed the whole system by himself, without receiving any training in electronics or engineering.

This is a great video which includes good examples of the value to experimenting, learning and adapting. Iteration is a critical skill when developing solutions. Try out prototypes and learn from what happens. Use that knowledge to develop new solutions or modify the existing solutions and experiment some more. Continue to iterate and improve.

This is another great example of people using their initiative, creativity and engineering talent to create appropriate technology solutions to create solutions that improve their lives. It is great to see how these efforts continue over time, this BBC article follows up on Richard Turere several years after his initial success:

What happened to the boy who chased away the lions?

The Lion Lights system is now in 750 homesteads in Richard’s community and beyond, with the innovator making small tweaks and improvements to each version.

Lion Lights 2.0 costs $200 (£150) to install. Half of the money usually comes from NGOs while the rest is provided by the herder.

This version has 16 different flashing light settings and Richard’s latest update is a homemade wind turbine for days when clouds limit the solar power potential.

But while his idea has travelled, support for Richard as a young innovator and the implementation of his own Lion Lights has stalled in recent years. He thinks Kenya could do more to help young innovators like himself.

“There are many young people in Kenya with brilliant ideas, better even than mine – they just need support,” he says.

They need someone to be there to tell them, “this idea is really nice., let’s develop it to help communities”.

The efforts of so many great young people to create solutions that make the world a better place are inspiring.

Related: Electric WindBeehive Fence Protects Farms from ElephantsAppropriate Technology and Focus on Improving Lives at MITUsing The Building of Robots to Engage Students in Learning

Using Horizontal Polarized Optics to Block Screens

Animated polarizer in front of a computer flat screen

Animated of a polarizer in front of a computer screen (via Wikipedia).


These interesting glasses block LCD/LED screens through horizontal polarized optics. I think this is more an interesting application of science that a useful product but maybe some people actually would like the product.

The video below looks at how IRL Glasses block most TVs (LCD/LED) and some computers (LCD/LED). IRL Glasses do not yet block smartphones or digital billboards (OLED).

Related: App to allow a user to use American Sign Language to interact with AlexaAutonomous Delivery Robots Launched in Europe and USA3D Printing at Home: Today, Challenges and OpportunitiesThe Engineer That Made Your Cat a Photographer

Continue reading

Saving Lives with Appropriate Technology Health Care Solutions: Treating Infant Pneumonia

How a shampoo bottle is saving young lives, a doctor in Bangladesh has found a simple way to treat infant pneumonia

Last year 920,000 children under the age of five died of pneumonia, making it the leading killer of people in that age group. This figure is falling (in 2011 it was 1.2m), but it still represents 16% of all infant deaths. Such deaths are not, however, evenly distributed. In Bangladesh pneumonia causes 28% of infant mortality.

Dr Chisti says that, as well as saving lives, his device has cut the hospital’s spending on pneumonia treatment by nearly 90%. The materials needed to make his version of a bubble-CPAP ventilator cost a mere $1.25. The device also consumes much less oxygen than a conventional ventilator. In 2013 the hospital spent $30,000 on supplies of the gas. In 2017 it spent $6,000.

Efforts are underway to test this innovation and spread the adoption of this appropriate technology solution to other poor countries. It is wonderful to see engineering innovation making such important improvements in health care around the world.

Related: Appropriate Technology Health Care Solution Could Save 72,000 Lives a Year (low-tech visual exam cut the cervical cancer death rate)Drone Deliveries to Hospitals in Rwanda$1 Device To Give Throat Cancer Patients Their Voice AgainWristband Thermometer Can Save Many Babies’ Lives

Growing Citrus in the Snow

The system uses the constant ground temperature 2.5 meters (8 feet) below ground to heat a greenhouse. The underground-temperature on his farm is 11 degrees (52 degrees Fahrenheit). Other nearby areas range from 9 to 17 degrees (17 is near a hot spring).

Just circulating air through 64 meters (210 feet) of tubing buried 2.5 meters underground is enough to allow citrus and other plants to thrive. Selling at local farmer’s markets brings in a very high profit for farmers that can grow and sell locally.

Using the power of the sun to grow and the constant ground temperature to keep the air warm enough creates an opportunity to grow all year round. The same principles can be used to cool down indoor temperatures in very hot locations near the equator.

Due to the controlled environment growing organically is easy so that further increases the payoff for this type of farming.

The cost of the system can be as low as $25,000 if you have access to a backhoe to dig the trenches for the air pipes and can do much of the labor yourself. That is the cost of just the heating systems for a conventional greenhouse.

I really like this type of intersection of engineering and business (as well as environment and health benefits – providing healthy local food) that creates value to society by using our knowledge effectively.

Learn more at Citrus in the Snow. The Nebraska farmer (seen in the video) has been growing Citrus in Nebraska this way since 1992.

Related: Sustainable Ocean FarmingBeehive Fence Protects Farms from ElephantsFor Many Crops Ants Can Provide Pest Protection Superior or Equal to Chemicals at a Much Lower CostSmall Farm Robots

Toyota’s Newest Humanoid Partner Robot

T-HR3 reflects Toyota’s broad-based exploration of how advanced technologies can help to meet people’s unique mobility needs. T-HR3 represents an evolution from previous generation instrument-playing humanoid robots, which were created to test the precise positioning of joints and pre-programmed movements, to a platform with capabilities that can safely assist humans in a variety of settings, such as the home, medical facilities, construction sites, disaster-stricken areas and even outer space.

“The Partner Robot team members are committed to using the technology in T-HR3 to develop friendly and helpful robots that coexist with humans and assist them in their daily lives. Looking ahead, the core technologies developed for this platform will help inform and advance future development of robots to provide ever-better mobility for all,” said Akifumi Tamaoki, General Manager, Partner Robot Division.

T-HR3 is controlled from a Master Maneuvering System that allows the entire body of the robot to be operated instinctively with wearable controls that map hand, arm and foot movements to the robot, and a head-mounted display that allows the user to see from the robot’s perspective. The system’s master arms give the operator full range of motion of the robot’s corresponding joints and the master foot allows the operator to walk in place in the chair to move the robot forward or laterally. The Self-interference Prevention Technology embedded in T-HR3 operates automatically to ensure the robot and user do not disrupt each other’s movements.

Onboard T-HR3 and the Master Maneuvering System, motors, reduction gears and torque sensors (collectively called Torque Servo Modules) are connected to each joint. These modules communicate the operator’s movements directly to T-HR3’s 29 body parts and the Master Maneuvering System’s 16 master control systems for a smooth, synchronized user experience.

Learn more on Toyota’s news site.

Related: Toyota Develops Thought-controlled Wheelchair (2009)Robots for Health Care from Toyota (2017)Toyota Human Support Robot (2012)Lexus Has Built a Working Hoverboard (2015)

Simple and Cheap Security Camera with 2 Way Audio and Backup to Cloud via Wifi

This is a cool product at a very reasonable price: $30.

The device offers a 1080p HD smart home camera with 14 days of free rolling cloud storage, wide-angle lens, two-way audio and the ability to send alerts to your phone. You setup the device to use a local wifi network and control it via a smartphone application.

I have long wanted such a product (they have been available for a few years but haven’t been cheap) and now they are available at a great price. The main drawback I see is that it requires a power connection (it doesn’t have a battery option). So setting it up as a doorbell is a bit of an issue (you have to get power to it somehow).

Order your camera. Learn more about the device from Wyzecam

Related: Camera Trap Images of Very Rare Wild CatsAnswer Your Doorbell with Your Smartphone Wherever You Are (and see video of who is at the door) (from 2015Video Cat CamCanon PowerShot SX60 HS Digital Camera

Large Scale Redox Flow Battery (700 megawatt hours)

Scientists and engineers in Germany have created the largest battery in the world with redox flow technology.

Redox flow batteries are liquid batteries. The Friedrich Schiller University of Jena has developed a new and forward-looking salt-free (brine) based metal-free redox flow battery. This new development will use salt caverns as energy storage.

schematic for salt-free (brine) based metal-free redox flow battery

Schematic for salt-free (brine) based metal-free redox flow battery by Ewe Gasspeicher. Two caverns each have a volume of 100,000 cubic meters.

A redox flow battery consists of two storage tanks and an electrochemical cell in which the reactions take place. Storage for solar and wind sources of power is an important challenge being explored in many ways today. Efforts such as this one provide a path to continue the rapid adoption of more solar and wind power.

In the electrochemical cell the two storage liquids – catholyte and anolyte – are separated from one another by a membrane. This prevents the large storage liquids from mixing with one another. The ions, however, can pass unimpeded through the membrane from one electrolyte solution into the other.

When charging the battery, the charging current ensures that electrons are deposited on the polymers of the anolyte. At the same time, the catholyte releases its electrons.

The charged catholyte and anolyte molecules are pumped from the cell into storage containers and replaced by uncharged ones. When the battery is discharged, the reaction is reversed. The anolyte molecules emit their electrons, which are available as electrical current.

Both charged electrolytes can be stored for several months. The maximum storage capacity of this redox-flow battery is limited only by the size of the storage containers for the electrolyte liquids.

The project is being ramped up now, going through a test phase before bringing the full system online; they are aiming to achieve this in 6 years. The electrical capacity of 700 megawatt hours will be enough to supply over 75,000 households with electricity for one day.

Related: Molten Salt Solar Reactor Approved by California (2010)Battery Breakthrough Using Organic Storage (2014)Chart of Global Wind Energy Capacity by Country from 2005 to 2015

Small Farm Robots

The IdaBot was created by researchers at Northwest Nazarene University (Idaho, USA).

Using robots in farming is limited today but the future could see a huge growth in that use. Benefits of introducing more robots to farming include reducing the use of pesticides and chemicals to control weeds.

Reducing labor costs is also a potential benefit but at current market prices (due to high costs of robotics and available cheap labor) that is more something for the future than today. However that can change fairly quickly – as for example the collapse in solar panel costs have made solar energy economically very attractive. In areas with high labor costs (Japan etc.) or areas where there are active efforts to reduce the supply of labor (in the USA where a significant portion of labor does not have proper visa to work in the USA and the current administration is seeking to reduce that labor availability) robots become more attractive economically.

Robot farmers are coming to a field near you

In Japan, using robots to harvest strawberries is roughly cost-equivalent to human labor if the ‘bots are shared between multiple farms, Lux Research said.

“With strawberry-picking being slow and labor-intensive, and labor scarce and expensive — the average agricultural worker in Japan is over 70 years old – the robot is quickly likely to become the cheaper option,” it said.

Lux Research also forecast European lettuce-growing — a major industry on the continent — would become automated by 2028.

“Automated lettuce weeding is already competitive with human labor in Europe, thanks to regulatory limitations on agrochemicals. Lettuce thinning is still accomplished manually at lower cost, but robots are likely to reach breakeven with human labor in 2028,”

The global market for agricultural robots will explode to $73.9 billion by 2024, up from $3.0 billion 2015

Related: For Many Crops Ants Can Provide Pest Protection Superior or Equal to Chemicals at a Much Lower CostSustainable Ocean FarmingCool Robot Locomotion: Transforms from Wheeled to Walking For Stairs and Rough Terrain (2012)Lean Science: Using Cheap Robots to Aid ResearchMoth Controlled Robot (2009)

Pepper – A Social Robot from Softbank

Pepper is a social robot developed in France and part of the Japanese conglomerate Softbank.

Pepper robots are at work in retail stores in Asia and Europe as sales associates. The first personal robots have been available in Japan for 2 years now and may be available elsewhere soon.

Continue reading

Autonomous Delivery Robots Launched in Europe and USA

Starship Technologies is launching a fleet of autonomous delivery robots on the pavements of the United Kingdom, Germany and Switzerland as part of the testing program. A similar program will be announced for the United States shortly.

The largest European food delivery company Just Eat, leading German parcel delivery company Hermes, leading German retailer Metro Group, and innovative London food delivery startup Pronto will test the delivery robots developed by Starship Technologies, a company launched in 2014 by Skype co-founders.

a starship robot at Branderburg Gate, Berlin

Starship delivery robot, Branderburg Gate, Berlin, Germany

As part of the program, dozens of robots will be deployed in five cities to run first test deliveries and introduce the innovative devices to the general public.

“By launching partnerships with major companies we will enter the next phase in our development. While Starship has been testing the robots in 12 countries in the last nine months, we will now develop know-how on running real robotic delivery services,” said Ahti Heinla, co-founder, CEO and CTO of Starship Technologies.

Robots developed by Starship Technologies are meant for delivering packages, groceries and food to consumers in a 2-3 mile radius. The robots can drive autonomously while being monitored by human operators in control centers. Introduced to European and American cities since the end of last year, the robots have already driven close to 5,000 miles and met over 400,000 people without a single accident.

Frank Rausch, CEO of Hermes Germany, said: “We are very proud to be Starship’s exclusive logistics partner in Germany. At Hermes we believe that parcel delivery’s main goal is to fully satisfy the customers’ needs in receiving their online shopping orders as fast and convenient as possible. Nobody likes to spend hours waiting for the courier just to have a parcel delivered. Therefore, individually scheduled delivery services will become increasingly important within the coming years.”

The test programs will run in London, Düsseldorf, Bern and another German city to start, before moving to several other European and American cities. Starship Technologies will also continue testing in Tallinn, Estonia where its R&D facilities are located.

Related: Using Drones to Deliver Medical Supplies in Roadless Areas (2014)Self Driving Cars Have Huge Potential for Benefit to Society (2014)Autonomous Helicopters Teach Themselves to Fly (2008)Toyota Develops Thought-controlled Wheelchair (2009)