Posts about appropriate technology

Creating Low-cost Construction Materials Using Recycled Plastic Waste

Nzambi Matee is a materials engineer and head of Gjenge Makers (in Kenya), which produces sustainable low-cost construction materials made of recycled plastic waste and sand. For her work, Nzambi Matee was recently named a Young Champions of the Earth by the United Nations Environment Programme.

Building blocks for a greener Nairobi

Through trial and error, she and her team learned that some plastics bind together better than others. Her project was given a boost when Matee won a scholarship to attend a social entrepreneurship training programme in the United States of America. With her paver samples packed in her luggage, she used the material labs in the University of Colorado Boulder to further test and refine the ratios of sand to plastic.

It is wonderful to see young people using an understanding of engineering to find ways to improve the world. Taking waste plastic and creating usable products will help reduce pollution and create a better world. We need quite a bit of effort to deal with plastic waste, so I look forward to learning about many more ideas turned into practical solutions in the real world.

Related: Cleaning Up the Plastic Pollution in Our OceansPedal Powered Washing MachineProtecting Cows with Lion LightsDrone Deliveries to Hospitals in Rwanda

Appropriate Technology: a Microscope and Centrifuge for Under $1

Malaria is estimated to have killed more than half the people that have ever lived. And it continues to kill millions. One big challenge is diagnosing malaria is difficult (those infected have flu like symptoms).

The video shows two great appropriate technology solutions to help diagnose malaria and save millions of lives. Manu Prakash from Stanford talks about 2 of his labs’ inventions the Foldscope and the Paperfuge. Combined these cost only 68 cents and they can be used to diagnose Malaria. Both of these are examples not only of simple, brilliant design, but of how engineering is used to make a positive dent in the world.

Read more about the Paperfuge: an ultra-low cost, hand-powered centrifuge inspired by the mechanics of a whirligig toy (open access paper).

This solution also shows the huge benefit people everywhere have gained when immigrants can take their skills and desires to institutions like Stanford to create solutions that greatly benefit the world. This powerful force has been creating huge benefits that we all have enjoyed for decades.

Related: Appropriate Technology and Focus on Improving Lives at MIT (2014)$1 Device To Give Throat Cancer Patients Their Voice Again (2016)Video showing malaria breaking into cell (2011)Engineering: Cellphone Microscope (2009)One Scientists 20 Year Effort to Defeat Dengue Fever (2012)

Protecting Cows with Lion Lights

It is wonderful to see what great things people accomplish to improve their lives using sensible, and fairly simple, engineering.

15 Year-Old Kenyan Prodigy, Richard Turere, Who Created “Lion Lights”

He fitted a series of flashing LED bulbs onto poles around the livestock enclosure, facing outward. The lights were wired to a box with switches and to an old car battery powered by a solar panel. They were designed to flicker on and off intermittently, thus tricking the lions into believing that someone was moving around carrying a flashlight.

The astonishing aspect of this is that Turere installed the whole system by himself, without receiving any training in electronics or engineering.

This is a great video which includes good examples of the value to experimenting, learning and adapting. Iteration is a critical skill when developing solutions. Try out prototypes and learn from what happens. Use that knowledge to develop new solutions or modify the existing solutions and experiment some more. Continue to iterate and improve.

This is another great example of people using their initiative, creativity and engineering talent to create appropriate technology solutions to create solutions that improve their lives. It is great to see how these efforts continue over time, this BBC article follows up on Richard Turere several years after his initial success:

What happened to the boy who chased away the lions?

The Lion Lights system is now in 750 homesteads in Richard’s community and beyond, with the innovator making small tweaks and improvements to each version.

Lion Lights 2.0 costs $200 (£150) to install. Half of the money usually comes from NGOs while the rest is provided by the herder.

This version has 16 different flashing light settings and Richard’s latest update is a homemade wind turbine for days when clouds limit the solar power potential.

But while his idea has travelled, support for Richard as a young innovator and the implementation of his own Lion Lights has stalled in recent years. He thinks Kenya could do more to help young innovators like himself.

“There are many young people in Kenya with brilliant ideas, better even than mine – they just need support,” he says.

They need someone to be there to tell them, “this idea is really nice., let’s develop it to help communities”.

The efforts of so many great young people to create solutions that make the world a better place are inspiring.

Related: Electric WindBeehive Fence Protects Farms from ElephantsAppropriate Technology and Focus on Improving Lives at MITUsing The Building of Robots to Engage Students in Learning

Saving Lives with Appropriate Technology Health Care Solutions: Treating Infant Pneumonia

How a shampoo bottle is saving young lives, a doctor in Bangladesh has found a simple way to treat infant pneumonia

Last year 920,000 children under the age of five died of pneumonia, making it the leading killer of people in that age group. This figure is falling (in 2011 it was 1.2m), but it still represents 16% of all infant deaths. Such deaths are not, however, evenly distributed. In Bangladesh pneumonia causes 28% of infant mortality.

Dr Chisti says that, as well as saving lives, his device has cut the hospital’s spending on pneumonia treatment by nearly 90%. The materials needed to make his version of a bubble-CPAP ventilator cost a mere $1.25. The device also consumes much less oxygen than a conventional ventilator. In 2013 the hospital spent $30,000 on supplies of the gas. In 2017 it spent $6,000.

Efforts are underway to test this innovation and spread the adoption of this appropriate technology solution to other poor countries. It is wonderful to see engineering innovation making such important improvements in health care around the world.

Related: Appropriate Technology Health Care Solution Could Save 72,000 Lives a Year (low-tech visual exam cut the cervical cancer death rate)Drone Deliveries to Hospitals in Rwanda$1 Device To Give Throat Cancer Patients Their Voice AgainWristband Thermometer Can Save Many Babies’ Lives

Drone Deliveries to Hospitals in Rwanda

Partnering with the Government of Rwanda, Zipline serves 21 hospitals nation-wide. They provide instant deliveries of lifesaving blood products for 8 million Rwandans.

Their drones are tiny airplanes (instead of the more common tiny helicopter model). Supplies are delivered using parachute drops from the drone. Landings are similar to landings on aircraft carriers (they grab a line to help slow down the drone) and, in a difference from aircraft carrier landings, the drone line drops them onto a large air cushion.

Zipline Muhanga Distribution Center launched in October 2016 making Rwanda the first country to integrate drones into their airspace and to begin daily operations of autonomous delivery.

As of May 2017, Zipline had completed over 350 delivery flights to real hospitals and their pace is accelerating. Zipline can cut delivery time from 4 hours to 15 minutes (which is extremely important in time critical health care emergencies).

I wrote in 2014 about the huge potential for drone delivery of medical supplies. It is wonderful to see Zipline improving people’s lives with their effort.

Related: Inspirational Engineer, William Kamkwamba from Malawi (2008)Using Rats to Sniff Out TBUS Fish and Wildlife Service Plans to Use Drones to Drop Vaccine Treats to Save FerretsWater Wheel

Continue reading

14 Year Old Signs $700,000 MOU for a Drone to Detect and Defuse Land Mines

Harshwardhan Zala, from Gujarat, India has signed an agreement worth Rs. 5 crore (US$733,940) to explore the possibility of commercial production of a drone created by him which can help in detecting and defusing landmines.

Harshwardhan started work on the prototype of the landmine-detecting drone last year after reading in newspapers about high army casualties due to landmines. Aerobotics7 is the company founded by the 14 years old.

Harshwardhan Zala, 14-year-old trends for Rs 5 crore deal at Vibrant Gujarat Global Summit 2017!

Explaining more about the drone, the zealous 14-year-old said, “The drone is designed to send out waves that cover eight sq. mt area while flying two feet above the surface; the waves detect land mines and communicate their location with a base station. The drone also carries a bomb weighing 50 gram that can be used to destroy the landmine.” Harshwardhan Zala’s proud father Pradhyumansinh is an accountant with a plastic company in Naroda, and his mother Nishaba is a homemaker.

[missing video – removed 🙁 ]

The video has Harshwardhan speaking a bit of English but mainly some other language that I don’t understand. If I understand right, his drone is 98% accurate at identifying mines (where the current solutions are 92% accurate – and much more dangerous for those having to walk around testing). His solution is 17 times faster and 22 times cheaper than the current solutions. Once the mine is detected by the drone through an infrared sensor, a 50 gram detonator will complete the task of defusing it (blowing it up).

This video shows a bit of the drone itself (non-English audio)

Continue reading

Using Rats to Sniff Out TB

Apopo’s African giant pouched rats are being used to sniff out mines and TB

In the face of what the World Health Organisation is calling a global TB epidemic, an innovative tech startup named Apopo is attempting to reverse the harrowing statistics, using rodents to sniff out TB in cough and spit samples.

No ordinary lab rats, Apopo’s African giant pouched rats – affectionately named HeroRats – are extremely sensitive to smell, with more genetic material allocated to olfaction than any other mammal species. They are also highly social animals, and can be trained to communicate with humans.

I have written about these wonderful rats previously, Appropriate Technology: Rats Helping Humans by Sniffing Out Land Mines. As I have stated many time I especially enjoy engineering solutions that use affordable and effective methods to help everyone.

Photo of Hero-rat detecting TB in Mozambique with Apopo staff person

Hero-rat detecting TB in Mozambique

A DNA-screening device that takes up to two hours to analyse each individual sample with 95pc accuracy costs $17,000 and thousands more in upkeep. By contrast, a HeroRat costs $6,500 to train, can probe through hundreds of samples every hour [70-85% accuracy rate], and requires only food, water and cages for shelter.

Keep these innovations coming. The USA needs them also given the massively costly healthcare system in the USA.

The TB sniffing rat program was developed through Apopo in Tanzania.

Related: Rats Show Empathy-driven BehaviorBeehive Fence Protects Farms from ElephantsTuberculosis Risk (2007)Dangerous Drug-Resistant Strains of TB are a Growing Threat (2012)

US Fish and Wildlife Service Plans to Use Drones to Drop Vaccine Treats to Save Ferrets

Despite significant recovery successes, the black-footed ferret remains one of the most endangered animals in the world.

Black-footed ferret

Black-footed ferret, photo by J. Michael Lockhart, USFWS.

The U.S. Fish and Wildlife Service has developed a plan to use (UAS) to deliver prairie dog sylvatic plague vaccination.

The primary purpose in this proposal is to develop the equipment, protocols and experience in use of UAS (drones) to deliver oral sylvatic plague vaccine (SPV). It is anticipated that this approach, when fully developed, will offer the most efficient, effective, cost-conscious and environmentally friendly method to apply SPV annually over large areas of prairie dog colonies in support of black-footed ferret recovery.

Plague is a primary obstacle to black-footed ferret recovery. After more than 20 years of intensive reintroduction efforts across 27 reintroduction sites ranging from Mexico to Canada, approximately 300 ferrets were known to exist in the wild at the end of 2015. Ferrets are constantly threatened by plague outbreaks that affect both ferrets, and their primary prey and habitat provider, prairie dogs.

To date, SPV has been applied by hand with people walking pre-defined transects and uniformly dropping single SPV baits every 9-10 meters to achieve a deposition rate of 50 SPV doses per acre. Depending on vegetation and terrain, a single person walking can treat 3-6 acres per hour. All terrain vehicles (ATVs) have been considered but have various problems.

The bait treats are M&Ms smeared in vaccine-laden peanut butter.

Preliminary discussions with people experienced with UAS suggest an aerial vehicle travelling at a modest 9 meters per second could drop a single SPV bait once per second that would result in treating one acre every 50 seconds. If the equipment and expertise can be developed as proposed here, a single UAS operator could treat more than 60 acres per hour.

If the equipment can be developed to deposit 3 SPV doses simultaneously every second, as they envision is possible, some 200 acres per hour could be treated by a single operator. The idea is that the drone would fire the treats in 3 different directions to increase the spread of treats.

The areas to be treated are located in South Phillips County, Montana.

Related: Using Drones to Deliver Medical Supplies in Roadless Areas (2014)The sub-$1,000 unpiloted aerial vehicles UAV Project (2007)Autonomous Flying Vehicles (2006)Cat Allergy Vaccine Created (2011)AlienFly RC Mosquito Helicopter (2007)

Concrete Tent

This shows a cool engineering innovation: canvas-like material that when it is saturated with water will set (over 5+ hours) into hard concrete. In this example a “tent” with regular doors is covered with water and inflated. After setting it hard enough to climb on top of.

The manufacturer’s site has move information.

Related: Concrete pre-fad Houses 1919 and 2007Easy to Assembly Off-the-grid TownsResearch on Ancient Roman Concrete Will Allow the Creation of More Durable and Environmentally Friendly ConcreteUW- Madison Wins 4th Concrete Canoe Competition

Ancient Chinese Natural Gas Drilling Using Bamboo

This very interesting article is a great read about the history of Chinese bamboo drilling by Oliver Kuhn.

The first recorded salt well in China was dug in Sichuan Province, around 2,250 years ago. This was the first time water well technology was applied successfully to the exploitation of salt, and marked the beginning of Sichuan’s salt drilling industry. From that point on, wells in Sichuan have penetrated the earth to tap into brine aquifers, essentially ground water with a salinity of over 50g/l. The water is then evaporated using a heat source, leaving the salt behind.

At some point around 2,000 years ago the leap from hand and shovel dug wells to percussively drilled ones was made. By the beginning of the 3rd century AD, wells were being drilled up to 140m deep. The drilling technique used can still be seen in China today, when rural farmers drill water wells. The drill bit is made of iron, the pipe bamboo. The rig is constructed from bamboo; one or more men stands on a wooden plank lever, much like a seesaw, and this lifts up the drill stem a metre or so. The pipe is allowed to drop, and the drill bit crashes down into the rock, pulverizing it. Inch by inch, month by month, the drilling slowly progresses.

A major breakthrough was achieved around 1050 AD, allowing deeper wells, when solid bamboo pipe was replaced by thin, light, flexible bamboo “cable”. This dramatically lowered the weight that needed to be lifted from the surface, a weight that increased with the depth being drilled. By the 1700s Sichuan wells were typically in the range of 300 – 400m deep

One bamboo pipe line would take away the brine, and others the gas. The 2,000 year plus Sichuan salt industry has drilled approximately 130,000 brine and gas wells, and 10% of those were in the immediate Zigong area. Zigong has a cumulative gas production over this period of over 30 billion cubic metres. The area continues to be a major salt producer, and many of the historical wells are still in production.

drawing of Chinese drilling scene

An ancient sketch originally from “The Annals of Salt Law of Sichuan Province”. A “Kang Pen” drum is seen in the centre foreground, with gas pipes directly feeding the salt stoves on the right. At the top, brine from a remote well is being carried in buckets by men, who feed it into a bamboo pipeline that runs down to the stoves. One of the carriers is being paid at top left, and it appears that a blow out is depicted on a new well being drilled.
(from Zhong & Huang)

As recently as the 1950s there was still over 95km of bamboo pipeline in operation in the Zigong area.

Related: Research on Ancient Roman Concrete Will Allow the Creation of More Durable and Environmentally Friendly ConcreteWhy did China’s Scientific Innovation Stop?Hyperloop – Fast Transportation Using a Better Engineering Solution Than We Do Now

$1 Device To Give Throat Cancer Patients Their Voice Again

Bengaluru Doctor Invents a Rs. 50 Device To Give Throat Cancer Patients Their Voice Again

Dr. Vishal Rao, a Bangalore based oncologist, has developed a voice prosthesis that can help throat cancer patients speak after surgery. And unlike the extremely expensive ones available in the market today, this device will cost just Rs. 50. [$US 1]

We need to keep developing cost effective solutions to provide for the needs of billions of people around the world. It is great to see appropriate technology solutions at work making people’s lives better.

Related: Appropriate Technology Health Care Solution Could Save 72,000 Lives a YearManufacturing Biological Sensors Using Silk and LoomsPedal Powered Washing MachineAppropriate Technology: Self Adjusting Glasses