Posts about chemical engineering

Choosing Between Chemical Engineering and Bioengineering

Chemical engineering and bioengineering, also called biomedical engineering, overlap in some areas because they both create new technology and innovations for the healthcare industry. However, the two disciplines are very different. Here is a comparison of the two careers to help you choose the one that would be best for you.

What Does a Chemical Engineer Do?

A chemical engineer uses science to find solutions to problems, such as manufacturing issues for a food company. They can also work for pharmaceutical, chemical, science, petroleum, coal, oil, gas, trade, manufacturing and other companies.

They usually work in a laboratory or office setting. Sometimes they have to work in an industrial or chemical plant. Some chemical engineers work in the field, such as a refinery. The daily tasks of a chemical engineer can vary, but they usually include research and testing. They may develop new chemicals products, or they may create and test equipment.

photo of a chemical engineering lab setup

Sometimes chemical engineers can solve important problems that affect different aspects of people’s lives. For example, Líney Árnadóttir is a chemical engineering associate professor who studies chemical processes on different surfaces to try to uncover how and why materials degrade.

Árnadóttir and other researchers used supercomputers to study chloride’s role in corrosion. Chemical engineers sometimes use technology, such as the supercomputers at the San Diego Supercomputer Center and the Texas Advanced Computing Center, to do their work and solve problems. By understanding how chloride affects materials like steel, the researchers can help companies, manufacturers and the environment deal with corrosion better.

What Is Bioengineering?

Bioengineering is a field that uses engineering to study and design biomedical technology and systems. A bioengineer usually works in healthcare. They frequently make new medical devices, equipment, software, computer systems and other products to help people.

Bioengineers can create new laboratory machines to diagnose medical problems or artificial organs to replace the ones in a person. It is possible for a bioengineer to find work in a laboratory, research center, manufacturing facility, hospital or university. Some bioengineers work for large companies and help them develop new products.

Every time you go to a doctor’s office or hospital you are seeing examples of bioengineering. When you need an MRI or CT scan, you are using technology built by bioengineers. If you need a hip replacement or a new knee, you are also benefiting from the designs created by bioengineers.

What Type of Qualifications Does Each Require?

In addition to studying engineering and chemistry, a chemical engineer must study math, biology and physics. As a student, you may have to study science topics like engineering computation or chemical engineering thermodynamics. A strong science and math background is important for becoming a chemical engineer. Many pursue a master’s degree after their bachelor’s degree.

A chemical engineer has to be a good problem solver. They have to look at a process or design and figure out how to make it work. They also have to fix it and figure out why it is not working when problems develop. Creativity is essential for this career.

A bioengineer must study engineering, biology and medical science. Additional topics studied by bioengineers include: genetics, computational biology and cell biology. Bioengineers will also must study math and other subjects during college. Many choose to pursue a master’s in biomedical engineering after earning their bachelor’s.

Continue reading

Highest Paying Fields at Mid Career in USA: Engineering, Science and Math

Payscale has again provided details on average salaries by major for various fields. Once again engineering, math and science dominate. For this data they define mid-career as those with 10+ years of experience.

The top 15 bachelor degrees by mid-career salary were all from those 3 fields. And the median salary was $168,000 for petroleum engineering degrees (at the top) to $107,000 for Aerospace Engineering and Computer Science and Mathematics (tied for 14th).

The starting salaries for those with these degrees ranged from $58,000 for Actuarial Mathematics (though by mid-career salary they were in 3rd place at $119,000) to $101,000 for petroleum engineering. My guess is petroleum engineering salaries will decline from their current highs (as they have done in previous oil price busts). The second highest paying bachelor degree starting salary was for mining engineering at $71,500 – with most of the other fairly close to that amount.

Nuclear engineering pay started at a median of $68,200 before rising to the 2nd highest mid-career level of $121,000.

Payscale also provided data based on master’s degree field. Again petroleum engineering was in first place by mid-career ($173,000). Nurse anesthesia was in second at $159,000 and held the first spot for starting median salary ($139,000).

Taxation is the only filed that is obviously not STEM (science, technology, engineering and math) related which had the lowest initial median salary of $60,700 but was tied for 5th for mid career salary at $126,000. Technology management and operations research are also not STEM fields though are a bit related to the STEM area.

PhD degree’s with the highest mid-career median earning are again all STEM fields. Economics is one many people probably don’t think of as STEM but it is (as a social science) and really it is largely mathematics at this point.

Many of the PhD starting salaries are at $100,000 (or close). The disciplines with the highest mid-career median salaries are: Electrical and Computer Engineering $142,000; Computer Engineering $139,000; Chemical Engineering $138,000; Biomedical Engineering, $137,000; and Economics $134,000.

Related: No Surprise, Engineering Graduates Pay Continue to Reign Supreme (2012)The Time to Payback the Investment in a College Education in the USA Today is Nearly as Low as Ever, Surprisingly (2014)Engineering Again Dominates The Highest Paying College Degree Programs (2011)Earnings by College Major” Engineers and Scientists at the Top (2013)Looking at the Value of Different College Degrees

Scientific Inquiry Leads to Using Fluoride for Healthy Teeth

This webcast, from the wonderful SciShow, explores how we discovered fluoride helps prevent tooth decay and how we then used that knowledge and finally discovered why it worked.

I love stories of how we learn for observing what is happening. We don’t always need to innovate by thinking up creative new ideas. If we are observant we can pick up anomalies and then examine the situation to find possible explanations and then experiment to see if those explanations prove true.

When working this way we often are seeing correlation and then trying to figure out which part of the correlation is an actual cause. So in this dental example, a dentist noticed his patients had bad brown stains on their teeth than others populations did.

After investigation the natural fluoridation of the water in Colorado Springs, Colorado, USA seemed like it might be an explanation (though they didn’t understand the chemistry that would cause that result). They also explored the sense that the discolored teeth were resistant to decay.

Even without knowing why it is possible to test if the conditions are the cause. Scientists discovered by reducing the level of fluoridation in the water the ugly brown stains could be eliminated (these stains took a long time to develop and didn’t develop in adults). Eventually scientists ran an experiment in Grand Rapids, Michigan and found fluoridation of the water achieved amazing results for dental health. The practice of fluoridation was then adopted widely and resulted in greatly improved dental health.

In 1901, Frederick McKay, a recent dental school graduate, opened a dental practice in Colorado Springs, Colorado. He was interested in what he saw and sought out other dentists to explore the situation with him but had little success. In 1909, he found some success when renowned dental researcher Dr. G.V. Black collaborate with him.
Dr. H. Trendley Dean, head of the Dental Hygiene Unit at the National Institute of Health built on their work when he began investigating the epidemiology of fluorosis in 1931. It wasn’t until 1945 that the Grand Rapids test started. Science can take a long time to move forward.

Only later did scientists unravel why this worked. The fluoride reacts to create a stronger enamel than if the fluoride is not present. Which results in the enamal being less easily dissolved by bacteria.
Health tip: use a dental stimudent (dental picks) or floss your teeth to maintain healthy gums and prevent tooth decay. It makes a big difference.

Related: Why does orange juice taste so bad after brushing your teeth?Microbiologist Develops Mouthwash That Targets Only Harmful Cavity Causing BacteriaUsing Nanocomposites to Improve Dental Filling PerformanceFinding a Dentist in Chiang Mai, ThailandFalse Teeth For CatsWhy Does Hair Turn Grey as We Age?

Research on Ancient Roman Concrete Will Allow the Creation of More Durable and Environmentally Friendly Concrete

Analysis of samples of ancient Roman concrete pinpointed why the best Roman concrete was superior to most modern concrete in durability, why its manufacture was less environmentally damaging – and how these improvements could be adopted in the modern world.

“It’s not that modern concrete isn’t good – it’s so good we use 19 billion tons of it a year,” says Paulo Monteiro (U.S. Department of Energy’s Lawrence Berkeley National Laboratory). “The problem is that manufacturing Portland cement accounts for seven percent of the carbon dioxide that industry puts into the air.”

Portland cement is the source of the “glue” that holds most modern concrete together. But making it releases carbon from burning fuel, needed to heat a mix of limestone and clays to 1,450 degrees Celsius (2,642 degrees Fahrenheit) – and from the heated limestone (calcium carbonate) itself. Monteiro’s team found that the Romans, by contrast, used much less lime and made it from limestone baked at 900Ëš C, or lower, requiring far less fuel than Portland cement.

Cutting greenhouse gas emissions is one powerful incentive for finding a better way to provide the concrete the world needs; another is the need for stronger, longer-lasting buildings, bridges, and other structures. Roman harbor installations have survived 2,000 years of chemical attack and wave action underwater. We now expect our construction to last 50 to 100 years.

The Romans made concrete by mixing lime and volcanic rock. For underwater structures, lime and volcanic ash were mixed to form mortar, and this mortar and volcanic tuff were packed into wooden forms. The seawater instantly triggered a hot chemical reaction. The lime was hydrated – incorporating water molecules into its structure – and reacted with the ash to cement the whole mixture together.

Continue reading

No Surprise: Engineering Graduates Continue to Reign Supreme

If you want a high paying job upon graduation choosing to major in engineering is a great choice, for those that enjoy it and are able to meet the challenge. This data is for the USA. My guess is that similar results would show up in most locations, but I am just guessing, I don’t have any specific data.

The top average starting salary paid USA under-graduates by major:

major
   
2012 salary
computer engineering $70,400
chemical engineering $66,400
computer science $64,400
aerospace/aeronautical/astronautical engineering $64,000
mechanical engineering $62,900
electrical/electronics and communications engineering $62,300
civil engineering $57,600
finance $57,300
construction science/management $56,600
information sciences and systems $56,100

NACE salary survey

This continues a long term trend of engineering major being rewarded: Engineering Majors Hold 8 of Top 10 Highest Paid MajorsEngineering Again Dominates The Highest Paying College Degree ProgramsS&P 500 CEO’s: Engineers Stay at the TopCareer Prospect for Engineers Continues to Look Positive.

Overall starting salaries were up 3.4% to $44,455. Engineering major starting salaries increased 3.9%, to $61,913. Computer science is the 2nd highest paid broad major category at $59,221 (up 3.8%). Next is business at $53,900 (up 4.2%). At the bottom of both average pay and increase was humanities and social sciences with $36,988, up 2%.

The highest-paying industry for Class of 2012 graduates in this report is mining, quarrying, and oil and gas extraction; employers in this industry offered starting salaries that averaged $59,400.

The mining, quarrying, and oil and gas extraction industry also has the top-paying occupations for Class of 2012 graduates. Mechanical engineering graduates hired as petroleum, mining, and geological engineers received starting salaries that averaged $77,500.

As I have said before, I believe it is foolish to pursue a career in a field that doesn’t interest you. Pay doesn’t make up for doing something you don’t enjoy. But if you enjoy several things somewhat equally pay is worth paying attention to.

Solar Powered Water Jug to Purify Drinking Water

Deepika Kurup, a 14-year-old New York student, won the Discovery Education 3M Young Scientist Challenge for her invention of a solar-powered water jug that changes dirty water into purified drinking water. She won the top prize of $25,000.

During “the 5 minutes of my presentation 15 children have died from lack of clean drinking water.”

I am thankful we have kids like this to create solutions for us that will make the world a better place. We rely on hundreds of thousands of such people to use science and engineering methods to benefit society.

Related: Strawjet: Invention of the YearCheap Drinking Water From SeawaterWater and Electricity for AllThanksgiving, Appropriately (power of capitalism and people to provide long term increases in standards of living)

Zubbles – Get Your Colored Bubbles

photo of blue bubblephoto of blue colored bubble.

I first posted on this in 2005: Colored Bubbles. Now you can order your own via Zubbles. Colored Bubbles Have Landed (and Popped and Vanished)

Having solved the colored bubble dilemma, we spent most of 2006 trying to refine our dyes and the manufacturing process. We had invented several completely new dyes and a few derivatives of existing dyes. But the manufacturing process was long, tedious and expensive. It took three days just to make a few grams of each dye. It quickly became apparent that we needed to radically streamline the production process in order to have a viable product.

The complexities of the chemistry resembled a pharmaceutical more than a toy. So I enlisted the help of Gary Willingham, and the Belgium development team, at Fisher Scientific. Fisher is a pharmaceutical chemical manufacturer with the equipment and expertise needed to manufacture tons of our dyes.

Due to the complexities of the chemistry, Jamm decided to stay close to the production process and manufacture Zubbles in the US. The first bottles rolled off the line this week. Jamm presented me with the very first case of Zubbles. And it was a very strange feeling to finally hold the product in my hand—15 years after I mixed my first batch of dishwashing detergent and food coloring.

Being an entrepreneur is a challenge any time. When your product requires complex science and engineering that adds additional challenges. It is great to see this product is now available.

Related: Making Magnificent Mirrors with Math1979 “iPod-like” Music PlayerThe Glove – Engineering Coolnessscience and engineering gadgets and giftsBuild Your Own Tabletop Interactive Multi-touch ComputerAwesome Cat Cam

What is a Molecule?

One of the things I keep meaning to do more of with this blog is provide some post on basic science concepts that may help raise scientific literacy. Some of these will be pretty obvious but even reminders on some facts you know can sometimes help.

What is a molecule?

A molecule is the smallest particle of a compound that has all the chemical properties of that compound. Molecules are made up of two or more atoms, either of the same element or of two or more different elements. The example of molecules are water (H2O) and carbon dioxide (CO2) and molecular nitrogen (N2).

Organic molecules contain Carbon, for example, Methane CH4). The original definition of “organic” chemistry came from the misconception that organic compounds were always related to life processes.

A few types of compounds such as carbonates, simple oxides of carbon and cyanides, as well as the allotropes of carbon, are considered inorganic. The division between “organic” and “inorganic” carbon compounds while “useful in organizing the vast subject of chemistry…is somewhat arbitrary”

Ionic compounds, such as common salt, are made up not of molecules, but of ions arranged in a crystalline structure. Unlike ions, molecules carry no net electrical charge.

Related: Why is it Colder at Higher Elevations?Why is the Sky Blue?10 Science Facts You Should KnowBacteria Communicate Using a Chemical Language

Using Virus to Build Batteries

MIT researchers have shown they can genetically engineer viruses to build both the positively and negatively charged ends of a lithium-ion battery. We have posted about similar things previously, for example: Virus-Assembled BatteriesUsing Viruses to Construct Electrodes and Biological Molecular Motors. New virus-built battery could power cars, electronic devices

Gerbrand Ceder of materials science and Associate Professor Michael Strano of chemical engineering, genetically engineered viruses that first coat themselves with iron phosphate, then grab hold of carbon nanotubes to create a network of highly conductive material.

Because the viruses recognize and bind specifically to certain materials (carbon nanotubes in this case), each iron phosphate nanowire can be electrically “wired” to conducting carbon nanotube networks. Electrons can travel along the carbon nanotube networks, percolating throughout the electrodes to the iron phosphate and transferring energy in a very short time. The viruses are a common bacteriophage, which infect bacteria but are harmless to humans.

The team found that incorporating carbon nanotubes increases the cathode’s conductivity without adding too much weight to the battery. In lab tests, batteries with the new cathode material could be charged and discharged at least 100 times without losing any capacitance. That is fewer charge cycles than currently available lithium-ion batteries, but “we expect them to be able to go much longer,” Belcher said.

This is another great example of university research attempting to find potentially valuable solutions to societies needs. See other posts on using virus for productive purposes.

Electrolyzed Water Replacing Toxic Cleaning Substances

Simple elixir called a ‘miracle liquid’

The stuff is a simple mixture of table salt and tap water whose ions have been scrambled with an electric current. Researchers have dubbed it electrolyzed water

Used as a sanitizer for decades in Russia and Japan, it’s slowly winning acceptance in the United States. A New York poultry processor uses it to kill salmonella on chicken carcasses. Minnesota grocery clerks spray sticky conveyors in the checkout lanes. Michigan jailers mop with electrolyzed water to keep potentially lethal cleaners out of the hands of inmates.

In Santa Monica, the once-skeptical Sheraton housekeeping staff has ditched skin-chapping bleach and pungent ammonia for spray bottles filled with electrolyzed water to clean toilets and sinks. “I didn’t believe in it at first because it didn’t have foam or any scent,” said housekeeper Flor Corona. “But I can tell you it works. My rooms are clean.”

It turns out that zapping salt water with low-voltage electricity creates a couple of powerful yet nontoxic cleaning agents. Sodium ions are converted into sodium hydroxide, an alkaline liquid that cleans and degreases like detergent, but without the scrubbing bubbles. Chloride ions become hypochlorous acid, a potent disinfectant known as acid water.

“It’s 10 times more effective than bleach in killing bacteria,” said Yen-Con Hung, a professor of food science at the University of Georgia-Griffin, who has been researching electrolyzed water for more than a decade. “And it’s safe.”

There are drawbacks. Electrolyzed water loses its potency fairly quickly, so it can’t be stored long. Machines are pricey and geared mainly for industrial use. The process also needs to be monitored frequently for the right strength.

Very cool use of science: providing a green cleaning agent that is effective.

Related: Clean Clothes Without Soapposts on chemical engineeringiRobot Gutter Cleaning RobotWater From Air

Easier Way to Make Coal Cleaner

MIT has an Energy “Manhattan project”. The USA has a huge amount of coal, if we ever can figure out how to make it clean that will be a huge benefit (though I have my doubts we can really make it clean enough). easier way to make coal cleaner

“Our approach — ‘partial capture’ — can get CO2 emissions from coal-burning plants down to emissions levels of natural gas power plants,” said Ashleigh Hildebrand, a graduate student in chemical engineering and the Technology and Policy Program. “Policies such as California’s Emissions Performance Standards could be met by coal plants using partial capture rather than having to rely solely on natural gas, which is increasingly imported and subject to high and volatile prices.”

The researchers conclude that as a near-term measure, partial capture looks promising. New coal plants with lower CO2 emissions would generate much-needed electricity while also demonstrating carbon capture and providing a setting for testing CO2 storage — steps that will accelerate the large-scale deployment of full capture in the future.

Related: Solar Thermal in Desert, to Beat Coal by 2020Electricity SavingsWind Power Provided Over 1% of Global Electricity in 2007Australian Coal Mining Caused Earthquakes