Posts about engineering education

PISA Science Education Results Show Singapore, Japan and Estonia Leading

The most comprehensive comparison of student achievement in math and science around the globe is completed by the Organisation for Economic Co-operation and Development (OECD). The 2015 Program for International Student Assessment (PISA) focuses on science understanding of 15 year olds (the 2012 report focused on math).

2015 results for the science portion (rank – country – mean score)(I am not listing all countries):

  • 1 – Singapore – 556
  • 2 – Japan – 538
  • 3 – Estonia – 534
  • 4 – Taiwan – 532
  • 5 – Finland – 531
  • 6 – Canada – 528
  • 7 – Vietnam – 525
  • 8 – China – 520*
  • 9 – Korea – 516
  • 13 – Germany – 509
  • 13 – UK – 509
  • 23 – USA – 496
  • 26 – Sweden – 493 (this is also the OECD average)
  • 56 – Mexico – 416
  • 61 – Brazil – 401

* I am merging several distinct Chinese locations reported in the official report.

The 2015 PISA include 72 participating countries and economies. From the PISA report:

On average across OECD countries, 25% of boys and 24% of girls reported that they expect to work in a science-related occupation. But boys and girls tend to think of working in different fields of science: girls envisage themselves as health professionals more than boys do; and in almost all countries, boys see themselves as becoming information and communications technologies (ICT) professionals, scientists or engineers more than girls do.

Related: 2009 results of science education student achievement around the globe2012 results for the science portion (math was the focus in 2012)The Economic Consequences of Investing in Science EducationCountry H-index Ranking for Science Publications

Using The Building of Robots to Engage Students in Learning

Fundi bots has a mission to use robotics training in African schools to create and inspire a new generation of problem solvers, innovators and change-makers. I believe strongly in this type of effort. We waste so much human potential by killing students design to learn. Instead we need to create systems that not only don’t kill that desire but allow it to flourish.

Fundi Bots focuses on the technological process of building robots as a way for students to look at the world around them from a practical, solution oriented perspective. By guiding students through problem identification, brainstorming, collaboration, construction, programming, final deployment and system feedback, we show them how the problems around them can be solved through a technological approach and persistent reductive analysis.

Fundi Made is an effort to create professional grade electronics right in our Fundi Spaces, and deploy the products in five core market segments; home-automation, agriculture, energy, security and health.

Related: Promoting Innovation in Sierra LeoneLetting Children Learn using Hole in the Wall ComputersGiven Tablets but No Teachers, Kids Teach Themselves (Having Never Seen Advanced Technology Before)Teaching Through TinkeringEncouraging Curiosity in Kids20th Annual US First Robotics Competition (2012)

STEM Graduates in the USA: 465,000 Women and 451,000 Men

STEM baccalaureate degrees in the USA in 2010 (reported by NSF in 2014):

Field Women
  
Men
Science (including math) 442,000 343,000
Engineering 23,000 108,000
Health 193,000 36,000
Total 658,000 486,000

If you exclude health, women still lead 465,000 to 451,000.

The same data for master’s degrees:

Field Women
  
Men
Science (including math) 86,000 72,000
Engineering 14,000 49,000
Health 97,000 22,000
Total 197,000 147,000

Excluding health the totals are: women 100,000, men 125,000.

In 2005, 235,197 women received undergraduate science and engineering degrees, compared to 230,806 for men. In 2005, 53,051 women received masters science and engineering degrees, compared to 66,974 men. All increased a large amount from 2005 to 2010 and degrees awarded to women increased much faster than the increase seen for men.

As I predicted in 2008 (Women Choosing Other Fields Over Engineering and Math) the trends continued and resulted in large imbalances in favor of women at the undergraduate level for science related degrees.

At the masters level women continue to increase degrees (nearly doubling from 2005 to 2010 excluding health). The relative gains (compared to men) at the masters level are small in that 5 year period, but it seems to me the news is mainly good. I expect women will show relative gains at the masters and PhD levels going forward, though those gains may well be slower than they were at the undergraduate level.

STEM fields continue to show large gender imbalances (with women and men dominating certain fields and being relatively rare in others). Continuing to provide opportunities for talented and interested students to explore their field of choice is important for the students well being and for the well being of society. We want to take advantage of the great minds we have and not have people excluded from pursuing their dreams.

Related: Alternative Career Paths Attract Many Women in Science FieldsThe USA is Losing Scientists and Engineers Educated in the USA

2012 Gordon Prize for Innovation in Engineering and Technology Education

I have posted on the Olin College of Engineering several times. I really like what they are doing. Innovation in engineering education will pay high dividends, especially providing a focus on the nexus of engineering and entrepreneurship.

Olin College of Engineering’s three founding academic leaders, Richard Miller, David Kerns and Sherra Kerns, received one of engineering’s highest honors – the Bernard M. Gordon Prize. The $500,000 prize is awarded by the National Academy of Engineering to recognize innovation in engineering and technological education.

“This team of educational innovators has had a profound impact on society by improving the way we educate the next generation of engineers,” said NAE President Charles M. Vest. “Olin serves as an exemplar for the rest of the engineering world and a collaborative agent for change.”

Armed with one of the largest gifts in the history of higher education, the F. W. Olin Foundation recruited Richard Miller as Olin’s first employee in 1999. To help build the college from scratch, Miller recruited the founding academic leadership team including David Kerns and Sherra Kerns later that year. Together, they developed a vision for an engaging approach to teaching engineering and a new culture of learning that is intensely student centered.

To insure a fresh approach, Olin does not offer tenure, has no academic departments, offers only degrees in engineering, and provides large merit-based scholarships to all admitted students.

Perhaps the most important contribution the Gordon prize recipients made was the creation of a profoundly inclusive and collaborative process of experimentation and decision-making involving students in every aspect of the invention of the institution. This is illustrated by the decision in 2001 to recruit 30 young students to spend a year as “partners” in residence with the faculty in conducting many experiments together before establishing the first curriculum.

“As entrepreneurs, we learn to listen to our customers. Olin’s innovative approach was co-created by enterprising faculty, inspired students, and a dedicated staff, as well as collecting and integrating innovative approaches from more than 30 other institutions worldwide,” said David Kerns, current faculty at Olin and founding provost and chief academic officer of the college from 1999 to 2007.

With the extensive help of a collaborative team of faculty and students, and the guidance of the late Dr. Michael Moody, a novel academic program emerged. Some of the features include a nearly gender-balanced community, a strong focus on design process throughout all four years, extensive use of team projects, a requirement that students repeatedly “stand and deliver” to the entire community at the end of every semester, an experiential requirement in business and entrepreneurship, a capstone requirement outside of engineering, and a year-long corporate-sponsored design project in which corporations pay $50,000 per project.

Related: Illinois and Olin Aim to Transform Engineering EducationWebcast: Engineering Education in the 21st CenturyImproving Engineering EducationHow the Practice and Instruction of Engineering Must Change

Continue reading

Top Online Graduate Engineering Programs in the USA

Online degree programs are growing quickly in popularity in the USA. Over 6 million students took online courses in 2011. The costs of traditional education continue to rise at extremely high rates – schools have done a horrible job of dealing with this. I personally, don’t understand how they have done so horribly on this measure. Administration costs have exploded. Building vanity projects that costs tens of millions of dollars add little to student achievement and waste limited resources driving up costs.

We really need to find administrators that will reduce administrative staffing levels and costs. Let some schools continue on the ego driven spiraling costs, but let us at least find some who will focus on reducing education costs and providing good education at reasonable costs. For engineering, more than maybe any other discipline, I can excuse some of the costs. But given the universal failure to manage costs I think the failure to manage costs is the primary issue (the extra demands for spending on engineering education, I understand).

The failure to stop the lavish spending has greatly increased the demand for online education. Given the unreasonable cost increases for traditional education many are priced out of considering that option. Given how unable schools have proven to be at providing good education for reasonable rates the last few decades it is reasonable to assume online education will continue to gain popularity. I don’t see the top tier schools facing much competition from online efforts (even if some students are drawn away there are plenty wanting to upgrade their school choice at whatever the cost – as the administrators know as they continue to drive up costs).

One danger is that online education is hardly a proved commodity yet. Both in terms of what you learn and the acceptance and desirability of degrees. So right now students are having to make guesses that are more challenging with online programs than the traditional choices. US News and World Report has selected 3 online engineering master’s programs for the honor roll.

Related: Engineering Education in the 21st CenturyHow the Practice and Instruction of Engineering Must ChangeGlobal Engineering Education Study

20th Annual US First Robotics Competition

If you have a child, niece, nephew, grandchild… who you haven’t been able to convince about the wonders of science maybe the starts on this promo (Justin Timberlake, Snoop Dogg, Justin Bieber…) can help convince them. If you want to convince your grandparents science is cool, then maybe they will like the cameos by Steven Tyler and Bono 😛 This is an effort being pushed by will.i.am (Black Eyed Peas) and Dean Kamen (US First Founder) to promote science and engineering. Since most politicians don’t seem interested in promoting and supporting science anymore maybe musicians can help turn things around.

I have written about US First, it is a great program. It engages children in learning by taping their curiosity and desire to create. I think learning this way is much more natural and fun and affective than what we have too often in schools today. I know I was bored quite often but was told the adults knew best. Well know I am an adult and I think I was right back then: our education system can, and should be greatly improved. Until then, US First, and similar, programs give kids a good environment for learning that keeps their desire to learn intact.

The video spot was created to promote a TV show commemorating the 20th annual US FIRST Robotics competition. Watch the TV show:

Related: Lunacy, FIRST Robotics Challenge 2009For Inspiration and Recognition of Science and Technology (FIRST), 2005 postTest it Out, Experiment by They Might Be GiantsBotball 2009 Finals

I was Interviewed About Encouraging Kids to Pursue Engineering

Amanda Moreno interviewed me about Encouraging Kids to Pursue Engineering over on the Knovel Blog.

What can parents do to cultivate an interest in science in their kids early on?

John Hunter: Ask questions. Answer questions. Explain how things work. Explain why things are done the way they are. Kids want the attention of their parents, and when they are younger they are constantly trying to get it (dad look, mom look, watch me!). They have similar feelings when they are older, but are not as forthright about saying what they want. If you take a sincere interest in their questions, you’ll motivate them to continue pondering how the world works. Make it fun to learn. Kids have an intrinsic motivation to learn. Keeping their curiosity alive is the first step.

So, on the university level, professors generally aren’t student-centric enough. What other factors are discouraging students in the classroom?

JH: I have one belief that is close to heresy. I don’t see why publication has to be so important for professors (if what we are after is good teachers, not authors). …

Read the rest of the interview.

Related: Backyard Wildlife: Sharpshinned HawkQubits Construction ToyWhat Kids can Learn By PlayingEncouraging Curiosity in Kids

Schematics of Electronic Circuits

Reading circuit diagrams

Schematic diagrams are made up of two things: symbols that represent the components in the circuit, and lines that represent the connections between them.

If a line runs between components, it means that they are connected, period, and it tells you nothing else. The connection can be a wire, a copper trace, a plug-socket connection, a metal chassis, or anything else that electricity will run through without much resistance. Messy details like wire or cable specifications and routing, if they are important for a project, belong elsewhere in its documentation. The length of a line also has nothing to do with the connection’s actual distance in real life. Schematics are drawn (ideally) to be clear and simple, with components and connections arranged on the page to minimize clutter, not to represent how they might be placed on a circuit board.

The video and the article give you a good start on understanding schematics. There are 2 ways to show wires crossing in a schematic (the video shows one, the article shows both). Learning how to read a schematic gives you the ability to go many different directions with your home engineering efforts. Have fun.

Related: Arduino: Open Source Programmable HardwareEZ-Builder Robot Control SoftwareBuilding a Windmill to Generate Electricity by Reading and ExperimentingTeaching Through Tinkering

Student Engineers Without Borders Project: Learning While Making a Difference in Kenya

photo of workers digging a large hole dug for the bio-gas latrine, while schoolchildren look on.

Engineers Without Borders students make progress, learn lessons in Kenya

Knowing nothing about Third-World development, the original [Engineers Without Borders] EWB students accepted an assignment from the national EWB to bring clean water wells and sanitary latrines to 58 elementary schools in the poor Khwisero district, where villagers live by subsistence farming.

Each year, new MSU students take up the challenge, aiming not only to provide healthier drinking water but to relieve Kenyan children of the chore of hiking more than a mile to fetch water every day from dirty water holes, which cuts into their schooling, particularly for girls.

They finally broke ground on their first pipeline system, which has been three years in the making. It will bring piping water from a high-quality well to several villages and eventually to a health clinic and a market. Villagers have committed to digging trenches for the water pipes.

This is a great program. Students learn a great deal by taking on real world problems and implementing solutions. As I have said before, I really love to see appropriate technology solutions put in place. We can drastically improve people’s lives by helping put solutions in place that work, are cost effective and can be maintained. Improving people’s quality of life is at the core of why engineering is so wonderful.

Related: Smokeless Stove Saves LivesEngineering a Better World: Bike Corn-ShellerHigh School Inventor Teams @ MIT Bring Clean Water to VillageWater and Electricity for All
Continue reading

Career Prospect for Engineers Continues to Look Positive

As I have written previously the career prospects for engineers are bright around the globe. Many countries realize the importance of engineering and have taken steps to compete as a center of excellence for engineering. It is a smart economic policy. Ironically, the USA, that did such a great job at this in the 1960’s and 1970’s, has been falling down in this regard. A significant reason for this is the USA can only fund so many things and a broken health care system, military complex, bailouts to bankers (trust fund babies and others) cost a lot of money. You chose what to fund, and those are taking much of the available USA funds. There are also non-economic reasons, such as the turn in the last decade in the USA to make the barriers for foreigner engineers (and others) to go through to go to school, visit and stay in the USA have all increased dramatically.

Back to the prospects for engineers: their are shortages of good engineers all over (and the future projections don’t show any reason to believe this will change). Germany Faces a Shortage of Engineers:

In June, the Association of German Engineers (VDI) reported that there were 76 400 vacant engineering jobs—an all-time high.

Policymakers in Berlin have responded to the shortage of skilled workers with a number of measures, including changes in immigration rules that allow German companies to hire engineers from other countries, including those outside of the European Union. Among them: The annual salary that companies must pay foreigners has been lowered from 60,000 Euro (US $95,000) to 40,000 Euro, which is roughly the starting salary of an engineering graduate in Germany…

To make it easy for engineers to move around Europe, engineering associations and other groups across Europe are working with the European Commission (the executive arm of the European Union) to launch the new Engineering Card. The card, which German engineers can apply for now and other countries are planning to launch, provides standardized information about the engineer’s qualifications and skills for greater transparency.

“We don’t expect many engineers will come, because among other reasons, there is a shortage of engineers across Europe,”

Related: Engineering Again Dominates The Highest Paying College Degree ProgramsS&P 500 CEO’s: Engineers Stay at the TopChina’s Technology Savvy LeadershipEngineers: Future ProspectsEconomic Strength Through Technology Leadership

Continue reading

11 Year Old Using Design of Experiments

This reminds me of great times I had experimenting with my father when I was a kid. Though, to be honest, Sarah is much more impressive than I was.

Catapulting to Success with Design of Experiments

photo of Sarah and her trebuchet

Sarah Flexman with her trebuchet at the Storm the Castle science challenge in North Carolina.

At the end of 2010, Sarah had decided to take part in Storm the Castle, one of the events offered in the statewide science Olympiad competition. This particular challenge was to design, build and launch a model trebuchet, which is a medieval-style catapult for hurling heavy stones…

Here’s Sarah’s whole process: She built the trebuchet, tested it, used JMP for DOE during optimization, changed the hook angle and sling to improve performance, did more tests, entered this new data, reran the model, and made her final prediction graphs. The variables in her DOE were string length, counterweight and projectile weight, and she optimized for distance – that is, how far the projectile would go.

“Rather than doing 125 tests because we have three variables with five levels each, DOE found a way for us to perform only 26 tests and get approximately the same results. I typed in the results, ran the model and used the JMP Profiler. I understood how the variables predicted the outcome and found several patterns,” she explained.

“I hadn’t done any building like that. The whole day was fun. It was a very open learning environment. You were experimenting with things you had never done before. I would definitely do it again,” Sarah said. And she will – next year.

I have collected quite a few design of experiments resources, for those who are interested in learning more. Here is a nice webcast by brother: Combinatorial Testing – The Quadrant of Massive Efficiency Gains, discussing the incredibly efficiency designed combinatorial testing (very similar ideas to design of experiments) can provide.

Related: Learning Design of Experiments with Paper HelicoptersPlaying Dice and Children’s NumeracyStatistics Insights for Scientists and EngineersSarah (a different one), aged 3, Learns About SoapStatistics for ExperimentersMulti-factor designed experimentsCombinatorial Testing for SoftwareWhat Else Can Software Development and Testing Learn from Manufacturing? Don’t Forget Design of Experiments (DoE)Letting Children Learn