Posts about university research

Benefits of a Mediterranean Diet May Include Reduced Risk of Cognitive Impairment As We Age

Medical studies about healthy living are very complex and not easy to draw clear conclusions from. But the evidence continues to grow on the benefits of a healthy Mediterranean diet.

Mediterranean diet may prevent memory loss and dementia, study finds

The true diet is simple, plant-based cooking, with the majority of each meal focused on fruits and vegetables, whole grains, beans and seeds, with a few nuts and a heavy emphasis on extra-virgin olive oil. Fats other than olive oil, such as butter, are consumed rarely, if at all. And say goodbye to refined sugar or flour.

Meat can make a rare appearance, but usually only to flavor a dish. Instead, meals may include eggs, dairy and poultry, but in much smaller portions than in the traditional Western diet. However, fish, which are full of brain-boosting omega-3’s, are a staple.

“Eating a healthy plant-based diet is associated with better cognitive function and around 30% to 35% lower risk of cognitive impairment during aging,” lead author Claire McEvoy, assistant professor at Queen’s University Belfast

I am skeptical of the size of the risk reduction. It is seems decades of health studies show that precise measures are not that trustworthy. But it does seem that there are many benefits to a Mediterranean diet.

photo of fish dish

This is actually a photo of a dinner I enjoyed while in Malaysia (which just is one I had easy access to add to this post)

I have been taking this into account in my eating. I try to eat much more green leafy vegetable (though more is from my very low levels before). I try to reduce the amount of meat and increase the amount of fish and nuts. I try to eat enough fiber and I eat yogurt. I try to eat more fruits and vegetables in general. I try to reduce the amount of processed foods and sugar. My diet is far from great but it is much better than is was 20 years ago. I have probably been focused on doing better for over 10 years (post from 9 years ago: Healthy Diet, Healthy Living, Healthy Weight).

Related: Eat food. Not too much. Mostly plants.Big Fat LiePhysical Activity for Adults: Inactivity Leads to 5.3 Million Early Deaths a YearHow Healthy Is Squid for Us?Obesity Epidemic Explained – Kind Of

Appropriate Technology: a Microscope and Centrifuge for Under $1

Malaria is estimated to have killed more than half the people that have ever lived. And it continues to kill millions. One big challenge is diagnosing malaria is difficult (those infected have flu like symptoms).

The video shows two great appropriate technology solutions to help diagnose malaria and save millions of lives. Manu Prakash from Stanford talks about 2 of his labs’ inventions the Foldscope and the Paperfuge. Combined these cost only 68 cents and they can be used to diagnose Malaria. Both of these are examples not only of simple, brilliant design, but of how engineering is used to make a positive dent in the world.

Read more about the Paperfuge: an ultra-low cost, hand-powered centrifuge inspired by the mechanics of a whirligig toy (open access paper).

This solution also shows the huge benefit people everywhere have gained when immigrants can take their skills and desires to institutions like Stanford to create solutions that greatly benefit the world. This powerful force has been creating huge benefits that we all have enjoyed for decades.

Related: Appropriate Technology and Focus on Improving Lives at MIT (2014)$1 Device To Give Throat Cancer Patients Their Voice Again (2016)Video showing malaria breaking into cell (2011)Engineering: Cellphone Microscope (2009)One Scientists 20 Year Effort to Defeat Dengue Fever (2012)

Scientists Watch Single Cell Organisms Evolve Multicellular Trait in Response to Predation

The scientists used the ciliate predator Paramecium tetraurelia to select for the de novo evolution of multicellularity in outcrossed populations of C. reinhardtii. They show that multicellular life cycles that evolved were passed on to future generations (the change was heritable). The evolved multicellular life cycles are stable over thousands of asexual generations in the absence of predators. Because C. reinhardtii has no multicellular ancestors, these experiments represent a novel origin of multicellularity.

De novo origins of multicellularity in response to predation

Here we show that de novo origins of simple multicellularity can evolve in response to predation. We subjected outcrossed populations of the unicellular green alga Chlamydomonas reinhardtii to selection by the filter-feeding predator Paramecium tetraurelia. Two of five experimental populations evolved multicellular structures not observed in unselected control populations within ~750 asexual generations.

The control populations remained unicellular. The populations subjected to predation evolved in different ways including one that formed stereotypic eight-celled clusters (Fig. 1A), with an apparent unicellular and tetrad life stage.

electron microscope images of multicellular colonies from evolved populations

Scanning electron micrographs of representative multicellular colonies from evolved populations. (A) Shows an amorphous cluster from population B2. Cell number varies greatly between clusters in this clone and between clones in this population. (B) Shows an eight-celled cluster from population B5. Octads were frequently observed in both populations.

an external membrane is visible around both evolved multicellular colonies, indicating that they formed clonally via repeated cell division within the cluster, rather than via aggregation.

The article also provides details on the scientific inquiry process where theory meets practical realities of observation. I think these ideas are very important and we often gloss over such details. This article was shared as an open access article and is written so that those who are interested in science but are not scientists can understand, which is a valuable. The research was funded by USA National Science Foundation, the John Templeton Foundation, the NASA Astrobiology Institute, a NASA Postdoctoral Program Fellowship and a Packard Foundation Fellowship. And the researchers work at public and private universities. Such research should all be published in an open access manner.

Related: The Amazing Reality of Genes and The History of Scientific InquiryParasite Evolved from Cnidarians (Jellyfish etc.)Why Don’t All Ant Species Replace Queens in the Colony, Since Some DoScientific Inquiry Leads to Using Fluoride for Healthy TeethMechanical Gears Found in Jumping Insects

Cats Protect Newborns From Developing Asthma

Everyone should appreciate the value of cats (as we do, honoring cats in our blog’s name); yet some people seem oblivious to the greatness of cats. In another demonstration of what we gain by associating with cats, research has shown living with cats as newborns helps protect those with a specific gene variation from developing asthma.

Cats protect newborns against asthma

The results reveal that cats remove the increased risk of developing asthma among children with a particular variation of the gene 17q21, called TT, which has the strongest impact on whether or not a child could develop asthma.

Almost one in three children in the study carried the TT gene variant, regardless of whether or not their mother had asthma.

“it looks like the effect is linked to a particular gene-variant, which goes to show just how complex the development of asthma and allergies are. It’s not only about genes and the environment, but how the two interact, and there’s so much that we still don’t know,”

The research indicates that cats reduce the risk of childhood asthma, pneumonia, and bronchiolitis in genetically susceptible subjects.

And no, dogs do not provide this protection. As with most research the scientists have new paths of inquiry to follow based on these results. Lead author Jakob Stokholm suspects that the reasons cats have this effect but dogs do not, “could be related to the bacteria that cats carry and perhaps fungi or viruses that they bring into the home”. Those questions can be the topic of further research.

Related: Cat Allergy Vaccine Created (2011)Awesome Cat CamThe History of Domestic CatsParasites in the Gut Help Develop a Healthy Immune SystemHypoallergenic Cats (2006)The Amazing Reality of Genes and The History of Scientific Inquiry

Stanford Research Scientists Discover 99% of the Microbes Inside Us are Unknown to Science

Readers of this blog know I am fascinated by the human microbiome. It is amazing how much of our biology is determined by entities within us that are not us (at least not our DNA) (bacteria, viruses etc.). This whole area of study is very new and we have quite a bit to learn. There are scientists across the globe studying this area and learning a great deal.

Stanford study indicates that more than 99% of the microbes inside us are unknown to science

Of all the non-human DNA fragments the team gathered, 99 percent of them failed to match anything in existing genetic databases the researchers examined.

The “vast majority” of it belonged to a phylum called proteobacteria, which includes, among many other species, pathogens such as E. coli and Salmonella. Previously unidentified viruses in the torque teno family, generally not associated with disease but often found in immunocompromised patients, made up the largest group of viruses.

“We’ve doubled the number of known viruses in that family through this work,” Quake said. Perhaps more important, they’ve found an entirely new group of torque teno viruses. Among the known torque teno viruses, one group infects humans and another infects animals, but many of the ones the researchers found didn’t fit in either group. “We’ve now found a whole new class of human-infecting ones that are closer to the animal class than to the previously known human ones, so quite divergent on the evolutionary scale,” he said.

Related: We are Not Us Without The Microbes Within UsWebcasts on the Human MicrobiomePeople are Superorganisms With Microbiomes of Thousands of Species (2013)We Have Thousands of Viruses In Us All the Time (2015)Tracking the Ecosystem Within Us (2007)

Large Scale Redox Flow Battery (700 megawatt hours)

Scientists and engineers in Germany have created the largest battery in the world with redox flow technology.

Redox flow batteries are liquid batteries. The Friedrich Schiller University of Jena has developed a new and forward-looking salt-free (brine) based metal-free redox flow battery. This new development will use salt caverns as energy storage.

schematic for salt-free (brine) based metal-free redox flow battery

Schematic for salt-free (brine) based metal-free redox flow battery by Ewe Gasspeicher. Two caverns each have a volume of 100,000 cubic meters.

A redox flow battery consists of two storage tanks and an electrochemical cell in which the reactions take place. Storage for solar and wind sources of power is an important challenge being explored in many ways today. Efforts such as this one provide a path to continue the rapid adoption of more solar and wind power.

In the electrochemical cell the two storage liquids – catholyte and anolyte – are separated from one another by a membrane. This prevents the large storage liquids from mixing with one another. The ions, however, can pass unimpeded through the membrane from one electrolyte solution into the other.

When charging the battery, the charging current ensures that electrons are deposited on the polymers of the anolyte. At the same time, the catholyte releases its electrons.

The charged catholyte and anolyte molecules are pumped from the cell into storage containers and replaced by uncharged ones. When the battery is discharged, the reaction is reversed. The anolyte molecules emit their electrons, which are available as electrical current.

Both charged electrolytes can be stored for several months. The maximum storage capacity of this redox-flow battery is limited only by the size of the storage containers for the electrolyte liquids.

The project is being ramped up now, going through a test phase before bringing the full system online; they are aiming to achieve this in 6 years. The electrical capacity of 700 megawatt hours will be enough to supply over 75,000 households with electricity for one day.

Related: Molten Salt Solar Reactor Approved by California (2010)Battery Breakthrough Using Organic Storage (2014)Chart of Global Wind Energy Capacity by Country from 2005 to 2015

Small Farm Robots

The IdaBot was created by researchers at Northwest Nazarene University (Idaho, USA).

Using robots in farming is limited today but the future could see a huge growth in that use. Benefits of introducing more robots to farming include reducing the use of pesticides and chemicals to control weeds.

Reducing labor costs is also a potential benefit but at current market prices (due to high costs of robotics and available cheap labor) that is more something for the future than today. However that can change fairly quickly – as for example the collapse in solar panel costs have made solar energy economically very attractive. In areas with high labor costs (Japan etc.) or areas where there are active efforts to reduce the supply of labor (in the USA where a significant portion of labor does not have proper visa to work in the USA and the current administration is seeking to reduce that labor availability) robots become more attractive economically.

Robot farmers are coming to a field near you

In Japan, using robots to harvest strawberries is roughly cost-equivalent to human labor if the ‘bots are shared between multiple farms, Lux Research said.

“With strawberry-picking being slow and labor-intensive, and labor scarce and expensive — the average agricultural worker in Japan is over 70 years old – the robot is quickly likely to become the cheaper option,” it said.

Lux Research also forecast European lettuce-growing — a major industry on the continent — would become automated by 2028.

“Automated lettuce weeding is already competitive with human labor in Europe, thanks to regulatory limitations on agrochemicals. Lettuce thinning is still accomplished manually at lower cost, but robots are likely to reach breakeven with human labor in 2028,”

The global market for agricultural robots will explode to $73.9 billion by 2024, up from $3.0 billion 2015

Related: For Many Crops Ants Can Provide Pest Protection Superior or Equal to Chemicals at a Much Lower CostSustainable Ocean FarmingCool Robot Locomotion: Transforms from Wheeled to Walking For Stairs and Rough Terrain (2012)Lean Science: Using Cheap Robots to Aid ResearchMoth Controlled Robot (2009)

Eating Nuts May Reduce the Risk of Heart Disease, Cancer and Other Diseases

A large analysis of current research shows that people who eat at least 20g of nuts a day have a lower risk of heart disease, cancer and other diseases. The analysis of all current studies on nut consumption and disease risk has revealed that 20g a day – equivalent to a handful – can cut people’s risk of coronary heart disease by nearly 30%, their risk of cancer by 15%, and their risk of premature death by 22%.

While this is reassuring news to those of us (like me) that frequently eat nuts I am not sold on their evidence. Heath research is prone to overstating the benefits. Still there is little reason to avoid making nuts part of a healthy diet. That is a big part of the reason I have. They offer benefits and maybe even great ones (as indicated in this research) without much risk.

An average of at least 20g of nut consumption was also associated with a reduced risk of dying from respiratory disease by about a half, and diabetes by nearly 40 percent, although the researchers note that there is less data about these diseases in relation to nut consumption.

The study, led by researchers from Imperial College London and the Norwegian University of Science and Technology, is published in the journal BMC Medicine, Nut consumption and risk of cardiovascular disease, total cancer, all-cause and cause-specific mortality: a systematic review and dose-response meta-analysis of prospective studies (open access paper).

The research team analysed 29 published studies from around the world that involved up to 819,000 participants, including more than 12,000 cases of coronary heart disease, 9,000 cases of stroke, 18,000 cases of cardiovascular disease and cancer, and more than 85,000 deaths.

While there was some variation between the populations that were studied, such as between men and women, people living in different regions, or people with different risk factors, the researchers found that nut consumption was associated with a reduction in disease risk across most of them.

Continue reading

The Challenge of Protecting Us from Evolving Bacterial Threats

I have long been concerned about the practices we continue to use increasing the risks of “superbugs.” I have written about this many times, including: The Overuse of Antibiotics Carries Large Long Term Risks (2005)Are you ready for a world without antibiotics? (2010), Antibiotics Breed Superbugs Faster Than Expected (2010), Entirely New Antibiotic (platensimycin) Developed (2006), Our Poor Antibiotic Practices Have Sped the Evolution of Resistance to Our Last-Resort Antibiotic (2015).

I do also believe the wonderful breakthroughs we make when we invest in science and engineering have made our lives much better and have the potential to continue to do so in many ways, including in dealing with the risks of superbugs. But this is something that requires great effort by many smart people and a great deal of money. It will only happen if we put in the effort.

Winning war against ‘superbugs’

hey won this particular battle, or at least gained some critical intelligence, not by designing a new antibiotic, but by interfering with the metabolism of the bacterial “bugs” — E. coli in this case — and rendering them weaker in the face of existing antibiotics

ROS, or “reactive oxygen species,” include molecules like superoxide and hydrogen peroxide that are natural byproducts of normal metabolic activity. Bacteria usually cope just fine with them, but too many can cause serious damage or even kill the cell. In fact, Collins’ team revealed a few years ago the true antibiotic modus operandi: they kill bacteria in part by ramping up ROS production.

We need to continue to pursue many paths to protecting us from rapidly evolving bacterial risks. Many promising research results will fail to produce usable solutions. We need to try many promising ideas to find useful tools and strategies to protect human health.

An Eukaryote that Completely Lacks Mitochondria

If you don’t have any idea what the title means that is ok. I probably wouldn’t have until the last 15 years when I found how interesting biology is thanks to the internet and wonderful resources online making biology interesting. I hope you find learning about biology as interesting as I do.

Look, Ma! No Mitochondria

Mitochondria have their own DNA, and scientists believe they were once free-living bacteria that got engulfed by primitive, ancient cells that were evolving to become the complex life forms we know and love today.

What they learned is that instead of relying on mitochondria to assemble iron-sulfur clusters, these cells use a different kind of machinery. And it looks like they acquired it from bacteria.

The researchers say this is the first example of any eukaryote that completely lacks mitochondria.

However, the results do not negate the idea that the acquisition of a mitochondrion was an important and perhaps defining event in the evolution of eukaryotic cells, he adds.

That’s because it seems clear that this organism’s ancestors had mitochondria that were then lost after the cells acquired their non-mitochondrial system for making iron-sulfur clusters.

Biology is amazing and mitochondria are one of the many amazing details. I wish so much that my education could have given biology a tiny fraction of the interest I have found it in after school.

Related: Human Gene Origins: 37% Bacterial, 35% Animal, 28% EukaryoticOne Species’ Genome Discovered Inside Another’sParasite Evolved from Cnidarians (Jellyfish etc.)Plants, Unikonts, Excavates and SARs

International Science Research Scholar Grants

The Howard Hughes Medical Institute (HHMI), Bill & Melinda Gates Foundation, Wellcome Trust, and Calouste Gulbenkian Foundation have announced the International Research Scholars Program which aims to support up to 50 outstanding early career scientists worldwide. The program’s aim is to help develop scientific talent worldwide.

The new international competition is seeking top early career researchers from a wide variety of biomedical research fields. Applicants must have started their first independent research position on or after April 1, 2009. Awardees will be invited to participate in research meetings with scientists supported by the funders. These meetings facilitate the exchange of ideas, stimulate new research, and provide an opportunity for collaborative endeavors within the international scientific community.

  • Awardees will receive a total of $650,000 over five years.
  • Applications are due June 30, 2016.
  • Awardees will be notified in April 2017.

HHMI and its partners have committed a total of $37.4 million for the International Research Scholars Program and will award each scientist who is selected a total of $650,000 over five years. The competition is open to scientists who have trained in the U.S. or United Kingdom for at least one year. Additionally, eligible scientists must have run their own labs for less than seven years, and work in one of the eligible countries.

Nieng Yan

Although Nieng Yan had several grants when she started her lab at Tsinghua University in 2007, she barely had enough money to pay her eight lab members. “In China, there is a limit on the percentage of a grant that you can use to pay people — your graduate students, your postdocs, your technicians, your assistants — to a decent level,” she explains. After struggling to balance her budget for several years, Yan’s scientific achievements and potential landed her an international grant from HHMI in 2012. “The amount of money provided by Hughes is relatively small compared to other programs, but it has the advantage that you can freely decide what to do with it,” says Yan. In fact, HHMI’s science officers encouraged Yan to use her five-year International Early Career Award (IECS) to cover the cost of paying her lab team, explaining that the money could be used in any way that assisted her research. Today, Yan has 15 people working in her lab helping to elucidate the structures of proteins that move molecules in and out of cells. The protein channels and transporters they study are mutated in a number of diseases — including diabetes and cancer — and understanding how they work could help in the development of drugs that block their ill effects. For example, the team recently solved the structure of GLUT1 – a glucose transporter that is often overexpressed in malignant tumor cells. Their data may provide clues for how to inhibit the transporter and perhaps even reveal a way to use it to deliver chemotherapeutic drugs. Photo Credit: Kevin Wolf (AP)

Countries that are not eligible for this competition include the G7 countries (Canada, France, Germany, Italy, Japan, United Kingdom and United States), as well as countries identified by the U.S. Department of Treasury, Office of Foreign Assets Control (OFAC) as being subject to comprehensive country or territory-wide sanctions or where current OFAC regulations prohibit U.S. persons or entities from engaging in the funding arrangements contemplated by this grant program. For this program, such sanctioned countries or territories currently include Iran, North Korea, Sudan, Syria, and the Crimea region of Ukraine.

Related: Directory of Science and Engineering Scholarships and FellowshipsFunding Sources for Independent Postdoctoral Research Projects in BiologyScientific Research Spending Cuts in the USA and Increases Overseas are Tempting Scientists to Leave the USA (2013)HHMI Expands Support of Postdoctoral Scientists (2009)Science, Engineering and Math Fellowships