Posts about mechanical engineering

Biomass Fueled Power Generator from All Power Labs

All Power Labs produces biomass fueled power generators. They have grown from a open science and engineering foundation to their current position. I really like how they are focused on promoting understanding and encouraging collaboration.

They reject the copyright cartel closed science mindset; which is something I like. Their product takes waste biomass; for example walnut shells, coconut shells, hardwood chips (Oak, Beech), softwood chips (Douglas Fir, Pine). It also takes corn cobs, palm kernel shells and others but there are additional challenges to operation.

Their products use gasification which is most simply thought of as choked combustion or incomplete combustion. It is burning solid fuels like wood or coal without enough air to complete combustion, so the output gas still has combustion potential. The unburned gas is then piped away to burn elsewhere as needed.

The Power Pallet is a complete biomass power generation solution that converts woody biomass into electricity. It costs $29,995 which translates to a cost of $1-$2/watt which is more cost effective that alternatives. They have significant sales in developing markets where power is often problematic. It is specifically not suited to some fuel – wastepaper (could maybe work in pelletized form), municipal waste, coconut husk…

This webcast is the start of a presentation on the history and current state of their efforts (continue to view other clips for the whole presentation):

Related: Ethanol: Science Based Solution or Special Interest WelfareDo It Yourself Solar Furnace for Home HeatingKudzu Biofuel Potential Chart of Wind Power Generation Capacity Globally from 2005 to 2012Turning Trash into Electricity (2006)

No Surprise: Engineering Graduates Continue to Reign Supreme

If you want a high paying job upon graduation choosing to major in engineering is a great choice, for those that enjoy it and are able to meet the challenge. This data is for the USA. My guess is that similar results would show up in most locations, but I am just guessing, I don’t have any specific data.

The top average starting salary paid USA under-graduates by major:

major
   
2012 salary
computer engineering $70,400
chemical engineering $66,400
computer science $64,400
aerospace/aeronautical/astronautical engineering $64,000
mechanical engineering $62,900
electrical/electronics and communications engineering $62,300
civil engineering $57,600
finance $57,300
construction science/management $56,600
information sciences and systems $56,100

NACE salary survey

This continues a long term trend of engineering major being rewarded: Engineering Majors Hold 8 of Top 10 Highest Paid MajorsEngineering Again Dominates The Highest Paying College Degree ProgramsS&P 500 CEO’s: Engineers Stay at the TopCareer Prospect for Engineers Continues to Look Positive.

Overall starting salaries were up 3.4% to $44,455. Engineering major starting salaries increased 3.9%, to $61,913. Computer science is the 2nd highest paid broad major category at $59,221 (up 3.8%). Next is business at $53,900 (up 4.2%). At the bottom of both average pay and increase was humanities and social sciences with $36,988, up 2%.

The highest-paying industry for Class of 2012 graduates in this report is mining, quarrying, and oil and gas extraction; employers in this industry offered starting salaries that averaged $59,400.

The mining, quarrying, and oil and gas extraction industry also has the top-paying occupations for Class of 2012 graduates. Mechanical engineering graduates hired as petroleum, mining, and geological engineers received starting salaries that averaged $77,500.

As I have said before, I believe it is foolish to pursue a career in a field that doesn’t interest you. Pay doesn’t make up for doing something you don’t enjoy. But if you enjoy several things somewhat equally pay is worth paying attention to.

Solar Powered Water Jug to Purify Drinking Water

Deepika Kurup, a 14-year-old New York student, won the Discovery Education 3M Young Scientist Challenge for her invention of a solar-powered water jug that changes dirty water into purified drinking water. She won the top prize of $25,000.

During “the 5 minutes of my presentation 15 children have died from lack of clean drinking water.”

I am thankful we have kids like this to create solutions for us that will make the world a better place. We rely on hundreds of thousands of such people to use science and engineering methods to benefit society.

Related: Strawjet: Invention of the YearCheap Drinking Water From SeawaterWater and Electricity for AllThanksgiving, Appropriately (power of capitalism and people to provide long term increases in standards of living)

Cool Robot Locomotion: Transforms from Wheeled to Walking For Stairs and Rough Terrain

This is a very cool engineering solution. Wheeled locomotion is very efficient on the right terrain. This transformation lets the robot switch to climb stairs and handle rough terrain very nicely. A team of mechanical engineers at National Taiwan University built this energy-efficient leg-wheel hybrid mobile robot. From their description:

Compared to most hybrid platforms, which have separate mechanisms and actuators for wheels and legs, our leg-wheel hybrid mobile robot, Quattroped, uses a “transformation mechanism” that deforms a specific portion of the body to act as a wheel or a leg. From a geometrical point of view, a wheel usually has a circular rim and a rotational axis located at the center of the rim. The rim contacts the ground and the rotational axis connects to the robot body at a point hereafter referred to as the “hip joint.” In general, with wheeled locomotion on flat ground, the wheel rotates continuously and the ground-contact point of the wheel is located directly below the hip joint with a fixed distance. In contrast, in legged locomotion the leg moves in a periodic manner and there is no specific geometrical configuration between the hip joint and the ground-contact point; thereby, the relative position of the legs varies frequently and periodically during locomotion.

Based on this observation, shifting the hip joint out of the center of the circular rim and changing the continuous rotation motion to other motion patterns implies the locomotion switches from wheeled mode to legged mode. This motivated us to design a mechanism that directly controls the relative position of the circular rim with respect to the hip joint so it can generate both wheeled and legged motions. Because the circular rim is a 2-dimensional object, the most straightforward method to achieve this goal is to add a second degree of freedom (DOF) that can adjust the relative position of the hip joint to the center of the circular rim along the radial direction. The motions of the two DOFs are also orthogonal to each other. In addition, the same set of actuation power can be efficiently used in both wheeled and legged modes.

Related: Big Dog, The Robotic Dog (2008)Robots That Start as Babies Master Walking Faster Than Those That Start as AdultsSelf Re-assembling RobotsSoft Morphing Robot (soft tissue)

Dennis Hong, Virginia Tech Mechanical Engineering Professor, Leading Robotics Innovation

Dennis Hong is the U.S. star in humanoid robotics

Hong came by his interest in science naturally. He was born in 1971 on the exclusive Palos Verdes Peninsula, outside Los Angeles, and his father, Yong Shik Hong, worked as an aerospace engineer at the federally funded Aerospace Corp. The family returned to Seoul in 1974 so the elder Hong could lead South Korea’s short-range missile program, at the bidding of then-President Park Chung Hee.

Korean fathers of that era were strict and remote. Hong’s father was engaged and intellectually indulgent. He installed a work bench in Dennis’s room when he was 4, complete with a hammer and saw. He led the children in chemistry experiments and brought home model airplanes from America.

Dennis Hong built things with scraps of wood and metal and bits of plastic. He disassembled toys and stored the parts in a chest beneath his bed.

“We spent a lot of time building things and breaking things,” said Julie Hong, Hong’s older sister. “He was the one who broke things the most and built things the most.”

Hong traveled to America to complete his university study, following his father’s credo, “Big fish must swim in the big sea.” He earned a bachelor’s in mechanical engineering at the University of Wisconsin and a master’s and doctorate at Purdue.

Dennis’ success illustrates several themes repeated in posts on this blog: the USA attracting talent from overseas, kids curiosity and exposure to science and engineering leading to great things, the value of strong science and engineering programs and professors. Robotics continue to progress very quickly. The economic impact of robotics is large already (largely in manufacturing) and will continue to grow dramatically. Likely robots will find their way into much more diverse areas over the next 2 decades. The Robotics and Mechanisms Laboratory, lead by Dennis Hong, seems poised to play a big role in that future.

Related: Robocup 2010, Robot FootballSoft Morphing Robot FutureEvolution of Altruism in RobotsToyota Develops Thought-controlled Wheelchair

Continue reading

Green Technology Innovation by College Engineering Students

With prizes totaling more than $100,000 in value, this year’s Climate Leadership Challenge is believed to be the most lucrative college or university competition of its kind in the country. The contest was open to all UW-Madison students.

A device that would help provide electricity efficiently and at low cost in rural areas of developing countries took the top prize – $50,000 – this week in a student competition at the University of Wisconsin-Madison for innovative ideas to counteract climate change.

The “microformer” is the brainchild of Jonathan Lee, Dan Ludois, and Patricio Mendoza, all graduate students in electrical engineering. Besides the cash prize, they will receive a promotional trip worth $5,000 and an option for a free one-year lease in the University Research Park’s new Metro Innovation Center on Madison’s east side.

“We really want to see implementation of the best ideas offered,” said Tracey Holloway, director of the Nelson Institute Center for Sustainability and the Global Environment at UW-Madison, which staged the contest for the second year in a row. “The purpose of this competition is to make an impact on climate change.”

The runner-up for the “most action-ready idea” was a proposal to promote the use of oil from Jatropha curcas plants to fuel special cooking stoves in places like Haiti. UW-Madison seniors Eyleen Chou (mechanical engineering), Jason Lohr (electrical engineering), Tyler Lark (biomedical engineering/mathematics) won $10,000 for their scheme to reduce deforestation by lowering demand for wood charcoal as a cooking fuel.

CORE Concept, a technology that would cut emissions from internal combustion engines by using a greater variety of fuels, won mechanical engineering doctoral students Sage Kokjohn, Derek Splitter, and Reed Hanson $15,000 as the “most innovative technical solution.”

SnowShoe, a smart phone application that would enable shoppers to check the carbon footprint of any item in a grocery store by scanning its bar code, won $15,000 as the “most innovative non-technical solution.” Graduate students Claus Moberg (atmospheric and oceanic science), Jami Morton (environment and resources), and Matt Leudtke (civil and environmental engineering) submitted the idea.

Other finalists were REDCASH, a plan to recycle desalination wastewater for carbon sequestration and hydrogen fuel production, by doctoral student Eric Downes (biophysics) and senior Ian Olson (physics/engineering physics); and Switch, an energy management system that integrates feedback and incentives into social gaming to reduce personal energy use, by doctoral students David Zaks (environment and resources) and Elizabeth Bagley (environment and resources/educational psychology).

Related: University of Michigan Wins Solar Car Challenge AgainCollegiate Inventors Competition$10 Million X Prize for 100 MPG Car

Google Uses Only Outside Air to Cool Data Center in Belgium

Another example of what makes Google such a good engineering company. They do some spectacular things but as importantly they take many, many, many, many individual steps which when taken together make a big difference. Google’s Chiller-less Data Center

Rather than using chillers part-time, the company has eliminated them entirely in its data center near Saint-Ghislain, Belgium, which began operating in late 2008 and also features an on-site water purification facility that allows it to use water from a nearby industrial canal rather than a municipal water utility.

Year-Round Free Cooling
The climate in Belgium will support free cooling almost year-round, according to Google engineers, with temperatures rising above the acceptable range for free cooling about seven days per year on average. The average temperature in Brussels during summer reaches 66 to 71 degrees, while Google maintains its data centers at temperatures above 80 degrees.

So what happens if the weather gets hot? On those days, Google says it will turn off equipment as needed in Belgium and shift computing load to other data centers. This approach is made possible by the scope of the company’s global network of data centers, which provide the ability to shift an entire data center’s workload to other facilities.

Related: Data Center Energy Needsengineering for a better environmentGoogle Aids Green Action

StoryCorps: Passion for Mechanical Engineering

StoryCorps is an effort to record and archive conversations. NPR plays excerpts of one of the conversations each week, and they are often inspiring. They are conversation between two people who are important to each other: a son asking his mother about her childhood, an immigrant telling his friend about coming to America, or a couple reminiscing on their 50th wedding anniversary. By helping people to connect, and to talk about the questions that matter powerful recording are made. Yesterday I heard this one – A Bent For Building, From Father To Daughter:

“Can a girl be an engineer?” she asked her father. His answer: There was no reason she couldn’t.

Anne loved to take her things apart. It was mostly her toys — until the day she took a clock apart and spread its contents out.

When her father asked what had happened, his daughter answered, “Oh, I took it apart. Daddy fix.”

And as her dad put things back together, Anne would sit by, watching intently to see how things were made. “Did you ever notice that I always followed you around the shop, watching?” Anne asked Ledo.

“I thought there was a magnet hooked up to me and to you.”

Related: Tinker School: Engineering CampSarah, aged 3, Learns About SoapWhat Kids can LearnColored Bubbles

Engineers and Scientists in Congress

I started maintaining a list of Congressmen with PhDs and graduate degrees in science, engineering and math awhile back.

Please comment with any additions that you know of.

The following were re-elected:
Vernon Ehlers, Michigan, physics PhD; Rush Holt, New Jersey, physics PhD; John Olver, Massachusetts, chemistry PhD; Brian Baird, Washington, psychology PhD; Bill Foster, Illinois, physics PhD.

Other scientists, engineers and mathematicians that were reelected include: Ron Paul, Texas, biology BS, MD; Jerry McNerney, California, mathematics PhD; Dan Lipinski, Illinois, mechanical engineering BS, engineering-economic systems MS; Todd Akin, Mississippi, management engineering BS;Cliff Stearns, Florida, electrical engineering BS; Louise Slaughter, New York, microbiology BS; Joe Barton, Texas, industrial engineering BS, Pete Stark, California, engineering BS, Mike Honda, California.

Lost: Nancy Boyda, Kansas (BS chemistry).

Newly elected: Bill Cassidy, Louisiana (BS Biochemistry, MD); Pete Olson, Texas (BA computer science); Kurt Schrader, Oregon (Doctor of Veterinary Medicine); Martin Heinrich, New Mexico (BS engineering), Gregg Harper, Mississippi (BS chemistry), Joseph Cao, Mississippi (BA physics); Brett Guthrie, Virginia (BS mathematical economics); Erik Paulsen, Minnesota, mathematics BA; Parker Griffith, Alabama (BS chemistry, MD); Cynthia Lummis, Wyoming (BS animal science and biology).

Before you leap to the conclusion that scientists are taking over Congress, remember 2 things: 1) I have probably been missing plenty that were in congress already and 2) this is still a total of less than 10% with even a BS in science, math or engineering. I attempted to determine the status of all those newly elected this year.

Please comment, if you know of others in Congress with science and engineering backgrounds. If we get this list to be relative close to accurate then we can start tracking the total representation in congress and see if it is increasing, decreasing or randomly fluctuating over time.

Related: Scientists and Engineers in CongressChina’s Technology Savvy LeadershipScience and Engineering in PoliticsThe A to Z Guide to Political Interference in Science

Dean Kamen: Stirling Engines

Dean Kamen: part man, part machine

Conceived in Scotland almost 200 years ago, the Stirling [engine] is a marvel of thermo-dynamics that could help to replace the internal combustion engine – in theory it can turn any source of heat into electricity, in silence and with 100 per cent efficiency. But corporations including Phillips, Ford and Nasa have devoted decades of research, and millions of dollars, to developing the engine, and all retired defeated, having failed to find a way of turning the theoretical principles of the engine into a workable everyday application. Kamen, nevertheless, has spent the past 10 years and, he estimates, up to $40 million working on the problem.

Now he and his engineers have built and tested a range of Stirling engines suitable for mass production that can be run on anything from jet fuel to cow dung. The one in the boot of the small blue car is designed to extend its range and constantly recharge its batteries to make a new kind of hybrid vehicle: one fit for the roads of the 21st century. A Stirling-electric hybrid, Kamen tells me, can travel farther and more efficiently than conventional electric cars; it generates enough power to run energy-hungry devices such as heaters and defrosters that are essential for drivers who, unlike those he calls the ‘tofu heads’ of California, must cope with a cold climate; and even using petrol, the engine runs far cleaner than petrol-electric hybrids such as Toyota’s Prius.

However, Kamen confesses, his new creation isn’t quite finished yet: ‘The Stirling engine’s not hooked up. Which really pisses me off.’

But it could work?

‘It will work,’ he says. ‘Trust me.’

Related: R&D Magazine’s 2006 Innovator of the YearRobotic Prosthetic Arms for People

Engineer Your Life

Engineer Your Life is an outreach initiative committed to sharing with college-bound young women the opportunities available to them in the world of engineering. Unfortunately they chose to use flash content and the website fails to follow simple usability guidelines (basic stuff like human readable urls, links that work without javascript…) but there is decent content. The use of flash and failing to pay attention to usability are highly correlated in my experience. The site profiles 12 engineers including Judy Lee:

Judy’s enthusiasm paid off. A few months later, the IKEA engineer asked her to design a children’s play mat. Judy was thrilled and soon found herself in IKEA headquarters in Sweden, where she worked with a team of engineers and product developers. It was at this moment that she realized her ideal job was one that truly offered a balance between creativity and problem solving.

Designing for IKEA
Judy began her new project by thinking about the way kids play. “I realized that kids today play indoors a lot. Maybe because the world seems a little more dangerous and parents are more protective. So I knew that this mat had to incorporate some kind of physical play element.” Rather than a static mat, Judy designed one resembling a giant lazy Susan that kids could spin around on. “Once I had the concept, the mechanical engineer in me took over. I needed something simple. Simplicity is awesome. My mat is basically two injection-molded pieces of plastic that spin on a set of interior wheels.”

Judy will never forget the experience of seeing her mat in an IKEA store. “It was incredible,” she recalls, “and it was such important validation for me that my ideas matter, they’re good, and they’re marketable.”

Dream Job at IDEO
Today, Judy has found her dream job in Palo Alto, California, at a company called IDEO, one of the country’s most innovative design firms. IDEO hires engineers, designers, psychologists, and businesspeople who work in teams to develop cutting-edge products (they created Apple Computer’s first mouse, for example). Judy designs children’s toys, pet products, and packaging for over-the-counter drugs and food. “I feel pretty lucky to have such a creative and interesting job. I’m surrounded by brilliant people. It doesn’t really seem like work. It’s just plain fun!”

Related: Beloit College: Girls and Women in ScienceWomen Choosing Other Fields Over Engineering and MathNASA You Have a ProblemGirls Sweep Top Honors at Siemens Competition in Math, Science and TechnologyWomen Working in Scienceother posts on poor usability