Posts about Economics

Using Scientific Knowledge to Drive Policies that Create a Better World

I have written about the problems of overfishing in the past: Add Over-Fishing to the Huge Government Debt as Examples of How We Are Consuming Beyond Our Means (2012)Fishless Future (2006)North American Fish Threatened (2008)The State of the Oceans is Not Good (2011)European Eels in Crisis After 95% Decline in Last 25 years (2009). This is not a complicated problem. If you just pay attention to the science and make wise decisions with an understanding of systems we can improve the situation.

And the USA has done so. The USA has more work to do, but by taking sensible steps based on an understanding of science we have made significant progress.

How the world can stop overfishing – A case study of U.S. fishery success

By 1996, the US had declared 86 species overfished. Fast forward twenty years, and only 29 species in US waters are classified as overfished. That’s a decrease of 66% from the peak of overfishing in the 1990s.

One year after President Clinton declared the New England ground fishery a federal disaster, congress met in Washington to amend and renew the 20-year-old Fishery Conservation and Management Act. The result was the Magnuson-Stevens Act, a major bipartisan commitment to end overfishing in US waters and promote fish stock recovery.

The goal of the Magnuson-Stevens Act was to create a framework for rebuilding overfished stocks in as short a time as possible. The timeframe for rebuilding a fish stock under the act is typically ten years or less.

To accomplish such a goal, scientists established fishery management plans for each overfished stock and instituted annual catch limits to control overfishing.

By the end of 2015, 89% of fisheries with annual catch limits in place had halted overfishing.

While 64% of the fish stocks managed by the Magnuson-Stevens Act are now rebuilt or recovering, success hasn’t been universal. Certain regional fisheries, such as those in the Gulf of Mexico and New England, have struggled to control overfishing under existing regulations. The act also does a poor job of protecting highly migratory species, such as tuna, swordfish, and sharks, which move freely between different regulatory areas.

We need to build on our successful use of scientific knowledge to make wise decisions and implement wise government policy. Sadly there is an alarming lack of appropriate thinking by many of those we elect to office, in the USA and around the globe. We can’t afford to elect people that don’t have an understanding of how to make wise decisions and how to ensure scientific knowledge forms the basis of policy when it should, such as: overfishing, pollution, global warming, the health care benefits vaccines provide when they are used properly, the dangers of abusing antibiotics, etc..

Continue reading

Ranking Countries by Scientific Publication Citations: USA, UK, Germany…

The SCImago Journal and Country Rank provides journal and country scientific indicators developed from the information contained in the Scopus database. I posted about this previously (in 2014, 2011 and 2008).

The data in the post is based on their data from 1996 through 2013. The web site also lets you look at these ranking by very specific categories. For example biotechnology #1 USA, #2 Germany, #3 UK, #4 Japan, #12 China or human computer interaction #1 USA, #2 Germany, #3 UK #4 Japan, #13 China).

I like looking at data and country comparisons but in doing so it is wise to remember this is the results of a calculation that is interesting but hardly definative. We don’t have the ability to measure the true scientific research output by country.

The table shows the top 6 countries by h-index and then some others I chose to list.

Country h-index 2010
h-index
2007
h-index
% of World
Population
% of World GDP total cites
USA 1,518 1,139 793     4.5%   22.2% 152,984,430
United Kingdom 918 689 465  0.9  3.5 37,450,384
Germany 815 607 408  1.1  5.0  30,644,118
France 742 554 376  0.9  3.8  21,193,343
Canada 725 536 370  0.5  2.4 18,826,873
Japan 635 527 372  1.8  7.8 23,633,462
Additional countries of interest (with 2013 country rank)
16) China 436 279 161  19.2  11.7  14,752,062
19) South Korea 375 258 161    .7  1.7  5,770,844
22) Brazil 342 239 148  2.8  3.0 4,164,813
23) India 341 227 146  17.5  2.6 5,666,045

Continue reading

80% of the Antibiotics in the USA are Used in Agriculture and Aquaculture

Citing an overabundance in the use of antibiotics by the agriculture and aquaculture industries that poses a threat to public health, economics professor Aidan Hollis has proposed a solution in the form of user fees on the non-human use of antibiotics.

In a newly released paper published (closed science, sadly, so no link provide), Hollis and co-author Ziana Ahmed state that in the United States 80% of the antibiotics in the country are consumed in agriculture and aquaculture for the purpose of increasing food production.

This flood of antibiotics released into the environment – sprayed on fruit trees and fed to the likes of livestock, poultry and salmon, among other uses – has led bacteria to evolve, Hollis writes. Mounting evidence cited in the journal shows resistant pathogens are emerging in the wake of this veritable flood of antibiotics – resulting in an increase in bacteria that is immune to available treatments.

If the problem is left unchecked, this will create a health crisis on a global scale, Hollis says.

Hollis suggest that the predicament could be greatly alleviated by imposing a user fee on the non-human uses of antibiotics, similar to the way in which logging companies pay stumpage fees and oil companies pay royalties.

“Modern medicine relies on antibiotics to kill off bacterial infections,” explains Hollis. “This is incredibly important. Without effective antibiotics, any surgery – even minor ones – will become extremely risky. Cancer therapies, similarly, are dependent on the availability of effective antimicrobials. Ordinary infections will kill otherwise healthy people.”

Bacteria that can effectively resist antibiotics will thrive, Hollis adds, reproducing rapidly and spreading in various ways.

“It’s not just the food we eat,” he says. “Bacteria is spread in the environment; it might wind up on a doorknob. You walk away with the bacteria on you and you share it with the next person you come into contact with. If you become infected with resistant bacteria, antibiotics won’t provide any relief.”

While the vast majority of antibiotic use has gone towards increasing productivity in agriculture, Hollis asserts that most of these applications are of “low value.”

“It’s about increasing the efficiency of food so you can reduce the amount of grain you feed the cattle,” says Hollis. “It’s about giving antibiotics to baby chicks because it reduces the likelihood that they’re going to get sick when you cram them together in unsanitary conditions.

“These methods are obviously profitable to the farmers, but that doesn’t mean it’s generating a huge benefit. In fact, the profitability is usually quite marginal.

“The real value of antibiotics is saving people from dying. Everything else is trivial.”

While banning the use of antibiotics in food production is challenging, establishing a user fee makes good sense, according to Hollis.

Such a practice would deter the low-value use of antibiotics, with higher costs encouraging farmers to improve their animal management methods and to adopt better substitutes for the drugs, such as vaccinations.

Hollis also suggests that an international treaty could ideally be imposed. “Resistant bacteria do not respect national borders,” he says. He adds that such a treaty might have a fair chance of attaining international compliance, as governments tend to be motivated by revenue collection.

Hollis notes that in the USA, a move has been made to control the non-human use of antibiotics, with the FDA recently seeking voluntary limits on the use of antibiotics for animal growth promotion on farms.

Related: Raising Food Without AntibioticsOur Dangerous Antibiotic Practices Carry Great RisksWhat Happens If the Overuse of Antibiotics Leads to Them No Longer Working?Antibiotics Too Often Prescribed for Sinus Woes

Hyperloop – Fast Transportation Using a Better Engineering Solution Than We Do Now

Elon Musk (the engineer and entrepreneur behind Tesla electric cars and before that he helped create PayPal) has a very cool idea of how to provide fast long distance transportation (faster than a plane). Essentially it is a big version of pneumatic tubes that used to be used to send small packages around a building, as seen in the movie – Brazil 🙂 Details are scheduled to be released August 12th.

This Is How Elon Musk Can Build the Hyperloop for a Tenth the Cost of High-Speed Rail

Having a elevated Hyperloop main line also completely avoids or reduces many of the pitfalls of ground-level right-of-ways, and opens up some new opportunities as well:

  • The crossing of other right-of-ways, like roads and railways, will be a breeze.
  • Rivers and other terrain obstacles will only be a 10th the problem of rail construction.
  • Hyperloop can avoid tunnels completely by having more flexible choices of right-of-way.
  • An elevated right-of-way opens up new route options, like leasing farmer’s fields using contracts similar to what wind-power companies sign.
  • That could be paid for by leasing Hyperloop’s right-of-way to communications companies for fiber optic cables, cell phone towers, etc.
  • …and let’s not forget the solar power that a couple of square miles of surface area can generate!

Hype Builds Before Elon Musk’s August Alpha Plan for Hyperloop

The Hyperloop would transport passengers from San Francisco to Los Angeles in about 30 minutes and at about twice the average speed of a commercial jet. The system would be on-demand, cheaper than current alternatives, impossible to crash, and potentially, run entirely on solar power.

Travelers ride in pods magnetically accelerated and decelerated into the main tube (like a rail gun) where the air circulates at speed. The air between pods acts as a cushion, preventing crashes, while more air injected through perforations in the tube levitates the pods and reduces friction, much as it might on an air hockey table.

Elon Musk has some very good ideas but what really sets him apart is turning them into functioning enterprises. Great ideas are wonderful but a huge number never go anywhere. Those people that can actually get ideas into the marketplace are the people that provide a much greater standard of living for all of us. And many of them are engineers.

Update: link to his blog post announcement.

More examples of cool extreme engineering: Monitor-Merrimac Memorial Bridge-TunnelTransferring Train Passengers Without Stoppingtransatlantic tunnelWebcast on Machine That Bores Subway Tunnels

3d Printers Can Already Save Consumers Money

I first wrote about 3d printing at home here, on the Curious Cat Engineering blog, in 2007. Revolutionary technology normally takes quite a while to actually gain mainstream viability. I am impressed how quickly 3d printing has moved and am getting more convinced we are underestimating the impact. The quality of the printing is improving amazingly quickly.

3d printed objects

As is so often the case these day, our broken patent system is delaying innovation in our society. For 3d printing there is a good argument the delays due to the innovation crippling way that system is operating today will be avoided as critical 3d patents expire in 2014. Patents can aid society but the current system is not, instead it is causing society great harm and delaying us being able to use new innovations.

“For the average American consumer, 3D printing is ready for showtime,” said Associate Professor Joshua Pearce, Michigan Technological University.

3D printers deposit multiple layers of plastic or other materials to make almost anything, from toys to tools to kitchen gadgets. Free designs that direct the printers are available by the tens of thousands on websites like Thingiverse (a wonderful site). Visitors can download designs to make their own products using open-source 3D printers, like the RepRap, which you build yourself from printed parts, or those that come in a box ready to print, from companies like Type-A Machines.

3D printers have been the purview of a relative few aficionados, but that is changing fast, Pearce said. The reason is financial: the typical family can already save a great deal of money by making things with a 3D printer instead of buying them off the shelf.

In the study, Pearce and his team chose 20 common household items listed on Thingiverse. Then they used Google Shopping to determine the maximum and minimum cost of buying those 20 items online, shipping charges not included.

Next, they calculated the cost of making them with 3D printers. The conclusion: it would cost the typical consumer from $312 to $1,944 to buy those 20 things compared to $18 to make them in a weekend.

Open-source 3D printers for home use have price tags ranging from about $350 to $2,000. Making the very conservative assumption a family would only make 20 items a year, Pearce’s group calculated that the printers would pay for themselves quickly, in a few months to a few years.

The group chose relatively inexpensive items for their study: cellphone accessories, a garlic press, a showerhead, a spoon holder, and the like. 3D printers can save consumers even more money on high-end items like customized orthotics and photographic equipment.

Continue reading

Clay Water Filters for Ghana

Pure Home Water, Ghana manufactures and distributes AfriClay Filters in an effort to bring clean water to 1 million people. So far they have delivered filters to provide 100,000 people clean water.

The process is simple. Water is placed in a clay filter and gravity pulls the water through the pores left in the clay during firing.

Sediment and bacteria are filtered out in several ways:

  • Physical straining: the particles are too large to fit through the pores in the clay
  • Sedimentation or adsorption: particles come to rest on or stick to the clay
  • Inertia: friction in the pores keeps the particles from passing through

Bacteria are also killed by a coating of colloidal silver (a disinfectant), which we apply to all filters that pass our quality control tests. While sediment and bacteria are filtered out, the molecules of water are small enough to pass through the pores in the clay.

The filters are sold to those who will use them. The effort has shown a willingness to pay by villagers in remote Northern Ghana (those earning < US$1/day). I imagine (I am just guessing) the prices are subsidized; in the last decade more (most?) appropriate technology solutions will have those benefiting pay something for the benefits they receive. My nephews are working on a similar effort in India, using bio sand filters, I plan to post more on that later. There is current a campaign to help fund the delivery of water filters to Indian villages.

Related: Solar Powered Water Jug to Purify Drinking WaterElectric WindStudent Invents Solar-Powered FridgeReducing Poverty

The Wonderful Coconut

One of the treats of living in a tropical climate is drinking coconut water. I love drinking the water from fresh coconuts. This video provides insight into the many uses of all parts of the coconut tree.

The Truth About Coconut Water by Kathleen M. Zelman, MPH, RD, LD – WebMD

[coconut water] has fewer calories, less sodium, and more potassium than a sports drink. Ounce per ounce, most unflavored coconut water contains 5.45 calories, 1.3 grams sugar, 61 milligrams (mg) of potassium, and 5.45 mg of sodium compared to Gatorade, which has 6.25 calories, 1.75 grams of sugar, 3.75 mg of potassium, and 13.75 mg of sodium.

There are some health benefits to consuming coconut water. It’s an all-natural way to hydrate, reduce sodium, and add potassium to diets. Most Americans don’t get enough potassium in their diets because they don’t eat enough fruits, vegetables, or dairy, so coconut water can help fill in the nutritional gaps.

Beyond that, the scientific literature does not support the hype that it will help with a laundry list of diseases. “There is a lot of hype about coconut water, yet the research is just not there to support many of the claims and much more research is needed,” says Cheung.

I have tried bottled coconut water which was pitiful. I don’t know if that was just a bad type and good options exist or the fresh stuff is just much much better. But I’ll stick to fresh coconut water as long as I can.

Related: Does Diet Soda Result in Weight Gain?Can You Effectively Burn Calories by Drinking Cold Water?How do Plants Grow Into the Sunlight?Eat food. Not too much. Mostly plants.

Open Source Ecology: Using Open Engineering to Create Economic Benefit

Open Source Philosophy. from Open Source Ecology on Vimeo.

I think the video’s message is overly simplistic and unrealistic (great innovations often seem unrealistic so I don’t mind people trying things I don’t think are likely to succeed in the ways they imagine). But I believe in the concepts of using our knowledge to use appropriate technology to make the standard of living better for everyone. Open access to scientific knowledge is important to such efforts and to the economic well being of modern society.

Open Source Ecology provides a modular, DIY (open access), low-cost, high-performance platform that allows for the easy fabrication of the 50 different Industrial Machines that it takes to build a small, sustainable civilization with modern comforts. The are recruiting for an Operations Manager, and an Executive Team (based in Kansas City or New York City in the USA).

Related: Pay as You Go Solar in IndiaStudent Engineers Without Borders Project: Learning While Making a Difference in KenyaReducing Poverty Through Entrepreneurism

System for Approving New Medical Options Needs Improvement

Something Doesn’t Add Up

Not only did the team find that evidence for Infuse’s benefits over existing alternatives for most patients was questionable; they also discovered in a broad array of published research that risks of complications (including cancer, male sterility and other serious side effects) appeared to be 10 to 50 times higher than 13 industry-sponsored studies had shown. And they learned that authors of the early studies that found no complications had been paid between $1 million and $23 million annually by the company for consulting, royalties and other compensation. Carragee, MD ’82, estimates Medtronic has sold several billion dollars’ worth of Infuse for uses both approved and “off label.”

Without a rigorous, data-driven context, medicine’s expensive traditions and hunch-based treatments threaten to bankrupt us. “People say that we shouldn’t delay science; people are dying; we should get new treatments out there. I do not feel the pressure to do that until we have solid evidence,” Ioannidis asserts. “The resources many procedures draw are enormous.” And that leaves insufficient funds for the prevention plans and treatments we know actually work.

I have written about the problems with our health care research system several times. The existing system is in need of improvement and is made much worse by the general state of the broken health care system in the USA. Dr. John P.A. Ioannidis, the focus of the article, is doing fantastic work in this area.

Related: Majority of Clinical Trials Don’t Provide Meaningful EvidenceStatistical Errors in Medical StudiesUSA Spends $7,960 Compared to Around $3,800 for Other Rich Countries on Health Care with No Better Health ResultsDrug Company Funding Taints Published Medical ResearchMistakes in Experimental Design and InterpretationUnderstanding Data

Promoting Innovation in Sierra Leone

Another inspirational kid that shows that the potential for human good is much greater than the talking heads and politicians that litter the TV screen so often.

In the video Kelvin says, “That is my aim: to Promote Innovation in Seira Leone, among young people.” See another video as Kelvin explains his homemade battery.

Support these young engineers in Sierra Leone via innovate Salone.

Related: Inspirational Engineer Build Windmill Using TrashSupporting the Natural Curiosity of KidsWhat Kids can Learn If Given a ChanceI was Interviewed About Encouraging Kids to Pursue Engineering

Solar Powered Water Jug to Purify Drinking Water

Deepika Kurup, a 14-year-old New York student, won the Discovery Education 3M Young Scientist Challenge for her invention of a solar-powered water jug that changes dirty water into purified drinking water. She won the top prize of $25,000.

During “the 5 minutes of my presentation 15 children have died from lack of clean drinking water.”

I am thankful we have kids like this to create solutions for us that will make the world a better place. We rely on hundreds of thousands of such people to use science and engineering methods to benefit society.

Related: Strawjet: Invention of the YearCheap Drinking Water From SeawaterWater and Electricity for AllThanksgiving, Appropriately (power of capitalism and people to provide long term increases in standards of living)

  • Recent Comments:

    • Alex: This is certainly the future. It is hart warming to see developing countries benefiting from such...
    • Donnie S. Willson: Underground tunnel is a good idea for traffic managment.i really appreciate it.
    • Richard Hopp: Awesome blog post, love the biodiversity. Really excited after watching this video, since I...
    • Robbie Miller: How fantastic, not only a great subject to study, but to be able to travel the world too....
    • Jaspal Singh: Japan has an edge when it comes to humanoid robots. No doubt in few more year, you will find...
    • Marcus Williams: This is actually a marvelous piece of engineering. Kudos for sharing!
    • M Zeeshan Haider: You are so interesting! I don’t believe I’ve truly read through anything like...
    • Jaspal Singh: I fully agree to the post idea. The farming is a natural process and should be free from any...
  • Recent Trackbacks:

  • Links