Posts about 3d-printing

Robot Prints a Building in 14 hours

The system consists of a tracked vehicle that carries a large, industrial robotic arm, which has a smaller, precision-motion robotic arm at its end. This highly controllable arm can then be used to direct any conventional (or unconventional) construction nozzle, such as those used for pouring concrete or spraying insulation material, as well as additional digital fabrication end effectors, such as a milling head.

Unlike typical 3-D printing systems, most of which use some kind of an enclosed, fixed structure to support their nozzles and are limited to building objects that can fit within their overall enclosure, this free-moving system can construct an object of any size. As a proof of concept, the researchers used a prototype to build the basic structure of the walls of a 50-foot-diameter, 12-foot-high dome — a project that was completed in less than 14 hours of “printing” time.

For these initial tests, the system fabricated the foam-insulation framework used to form a finished concrete structure. This construction method, in which polyurethane foam molds are filled with concrete, is similar to traditional commercial insulated-concrete formwork techniques. Following this approach for their initial work, the researchers showed that the system can be easily adapted to existing building sites and equipment, and that it will fit existing building codes without requiring whole new evaluations, Keating explains.

Ultimately, the system is intended to be self-sufficient. It is equipped with a scoop that could be used to both prepare the building surface and acquire local materials, such as dirt for a rammed-earth building, for the construction itself. The whole system could be operated electrically, even powered by solar panels. The idea is that such systems could be deployed to remote regions, for example in the developing world, or to areas for disaster relief after a major storm or earthquake, to provide durable shelter rapidly.

The ultimate vision is “in the future, to have something totally autonomous, that you could send to the moon or Mars or Antarctica, and it would just go out and make these buildings for years,” says Keating, who led the development of the system as his doctoral thesis work.

Continue reading

Bitbeam: Open Source Hardware Prototyping Platform

Bitbeam is an open source construction toy/hardware prototyping platform. A collection of LEGO Technic compatible parts (beams) which can be combined to construct whatever contraption the user has thought up.

The Bitbeam project aims to define a set of parts which the users themselves can produce using increasingly available technologies for local fabrication like 3D printers, laser cutters and CNC mills.

view of various piece of 3d printed items

Tapster is a robot that automates mobile application checking on a smartphone. It is built using bitbeam.

The latest post on the Bitbeam web site is from 2013 but it seems it is still an active project (it would be nice if they update the site).

Please add a comment if you now of updated information or of similar open source projects.

Related: Open Source Ecology: Using Open Engineering to Create Economic BenefitArduino Introduction Video Tutorial3D Printing at Home: Today, Challenges and OpportunitiesIntroduction Video on 3D PrintingLego Mindstorms Robots Solving: Sudoku and Rubik’s Cube (2009)

3D Printing at Home: Today, Challenges and Opportunities

Guest post by Noah Hornberger

The State of 3D Printing at Home

Rapid prototyping is very rewarding. Moving from an idea that you had during breakfast to an object you can hold in your hands by lunchtime feels like magic or science fiction.

Modeling tools are getting easier to use, making the actual process of designing 3D objects fairly intuitive and dare I say . . . easy. I suspect home 3D printing is empowering a silent revolution that will be more and more apparent in the coming years.

3d printed taco holder with tacos

Taco Shell Holder, a recent idea I had during breakfast was ready to test the next day.

Even so, there is a lot of quirkiness to the 3D print technology that an average consumer is probably not ready to deal with. In this post I want to give inside information I have learned by running my own home-based 3D print business. I have been there in the trenches, with a queue of orders, a few 3D printers and the drive to make it happen. And let me tell you that without the drive to push past the obstacles, it really would not be possible to run a 3D print-on-demand business this way.

3D printers have enabled me to pull off an impossible task of distributing my own artistic products to an international market. I have shipped to USA, Spain, Australia, Norway, Canada, and the UK. And this May of 2015 marks my first year of owning a 3D printer.

small 3d printed planters, 1 with a plant growing in it

Mini Dodecahedron Planters, my first attempt at designing and printing an idea from scratch. I was hooked.

So there is some magic I would say in being able to move through iterations of your ideas so fast. And magic in being able to post photos of your products that people can understand to be real and tangible things.

I have had ideas for products for many years and even tried to launch them (unsuccessfully). But now things are different. I do not have to convince people that an idea is good, I can show them a real example of finished art they can own.

I would argue that 3D modeling is the easiest part of the process. Getting a spectacular print can take some work and patience, because it can involve re-starting the printer with small changes in settings each time. As an American trained artist, I have a tendency to want things to be fast and easy. I want to press a button and it just works. 3D printers can kind of promise this ability, but most often, I am stepping in to keep the machines on track.

Continue reading

3d Printers Can Already Save Consumers Money

I first wrote about 3d printing at home here, on the Curious Cat Engineering blog, in 2007. Revolutionary technology normally takes quite a while to actually gain mainstream viability. I am impressed how quickly 3d printing has moved and am getting more convinced we are underestimating the impact. The quality of the printing is improving amazingly quickly.

3d printed objects

As is so often the case these day, our broken patent system is delaying innovation in our society. For 3d printing there is a good argument the delays due to the innovation crippling way that system is operating today will be avoided as critical 3d patents expire in 2014. Patents can aid society but the current system is not, instead it is causing society great harm and delaying us being able to use new innovations.

“For the average American consumer, 3D printing is ready for showtime,” said Associate Professor Joshua Pearce, Michigan Technological University.

3D printers deposit multiple layers of plastic or other materials to make almost anything, from toys to tools to kitchen gadgets. Free designs that direct the printers are available by the tens of thousands on websites like Thingiverse (a wonderful site). Visitors can download designs to make their own products using open-source 3D printers, like the RepRap, which you build yourself from printed parts, or those that come in a box ready to print, from companies like Type-A Machines.

3D printers have been the purview of a relative few aficionados, but that is changing fast, Pearce said. The reason is financial: the typical family can already save a great deal of money by making things with a 3D printer instead of buying them off the shelf.

In the study, Pearce and his team chose 20 common household items listed on Thingiverse. Then they used Google Shopping to determine the maximum and minimum cost of buying those 20 items online, shipping charges not included.

Next, they calculated the cost of making them with 3D printers. The conclusion: it would cost the typical consumer from $312 to $1,944 to buy those 20 things compared to $18 to make them in a weekend.

Open-source 3D printers for home use have price tags ranging from about $350 to $2,000. Making the very conservative assumption a family would only make 20 items a year, Pearce’s group calculated that the printers would pay for themselves quickly, in a few months to a few years.

The group chose relatively inexpensive items for their study: cellphone accessories, a garlic press, a showerhead, a spoon holder, and the like. 3D printers can save consumers even more money on high-end items like customized orthotics and photographic equipment.

Continue reading

Introduction Video on 3D Printing

3D printing is an amazing technology that opens up great opportunities for us to enjoy life. The future is great. It is exciting to see how quickly advances are being made in this area. I think the ability to print replacement parts is a huge benefit. And the creative uses people will put these printers too will be a joy to see.

Related: A Pen That Prints in 3D While You DrawOpen Source 3-D Printing (2007)Great 3D Printing Presentation by a kid (2011)3D Printing is Here (2009)A plane You Can Print (2006)

Open Source 3-D Printing

Fab@home 3d printer

3-D Fabrication Goes Open Source

Hod Lipson and Evan Malone of Cornell University have cooked-up a cheap DIY 3-D printer – the Fab@Home – that they believe could lead to the widespread use of fabrication machines by hobbyists and experimenters. Fabrication machines, or fabbers, operate on the same principle as inkjet printers, but instead of squirting out ink onto paper, they squirt plastic or other materials into three-dimensional shapes. Commercial systems average around $100,000, but you can build Cornell’s Fab@Home for about US$2,300 worth of off-the-shelf parts.

Related: fab@homeCornell Computational Synthesis LabA Plane You Can Print