Currently browsing the K-12 Category

About or related to (k-12) science and engineering education. Likely of interest to teachers and administrators. Teachers may also find many of the science and engineering students category posts useful.
Recommended posts: Middle School Engineers - k-12 Engineering Education - k-12 Engineering Outreach Programs - Colorado Science Teacher of the Year
Related: Curious Cat Alumni Connections - Web directory of k-12 education improvement sites

About or related to primary (k-12) science and engineering education. Likely of interest to teachers and administrators. Teachers may also find many of the posts we feel are of interests to students interested in science and engineering useful.

Special Summer Fun Issue of Make Magazine

Make is really is a wonderful way to find ideas. Some people have the imagination to come up with all sorts of projects to try, I don’t. But Make takes care of that for you and provides really interesting ideas for things to try out yourself.

The summer fun guide includes over 50 projects for kids of all ages.

Related: Book on Adventures in MakingAwesome Gifts for the Maker in Your LifeThe DIY Movement Revives Learning by Doing

Good Chemistry: A Love Song for Ionic Bonds

Song and video by 10th grade student, Eli Cirino, for extra credit in his chemistry class.

An ionic bond is a type of chemical bond formed through an electrostatic attraction between two oppositely charged ions. Ionic bonds are formed between a cation, which is usually a metal, and an anion, which is usually a nonmetal.

An ionic bond is considered a bond where the ionic character is greater than the covalent character (ionic bonds cannot exist on their own, they must have a covalent bond present also).

Related: Protein Synthesis: 1971 VideoCooking with Chemistry: Hard CandyThe Chemistry of Hair Coloring

Kindergarten Students Pedel Their Own Bus to School

photo of kindergarden students pedaling their bus to school

Dutch kindergarden students pedaling their bus to school

Dutch Kids Pedal Their Own Bus To School

The Dutch are bicycle fanatics. Almost half of daily travel in the Netherlands is by bicycle, while the country’s bike fleet comfortably outnumbers its 16 million people. Devotees of the national obsession have taken the next logical step by launching what is likely the first bicycle school bus.

Built by Tolkamp Metaalspecials, and sold by the De Cafe Racer company, the bicycle school bus (BCO in Dutch) is powered entirely by children and the one adult driver (although there is an electric motor for tough hills). Its simple design has eight sets of pedals for the kids (ages 4 to 12), a driver seat for the adult, and three bench seats for freeloaders. The top speed is about 10 miles per hour, and features a sound system and canvas awning to ward off rainy days.

They have sold 25 of the busses so far for $15,000 each.

Related: Sports EngineeringGermany Looking to Kindergarten for Engineering FutureEngineering a Better World: Bike Corn-Sheller

10 Year Old’s Molecule Design Becomes the Topic of a Scientific Paper

10-Year-Old Helps Professor With Theoretical Chemistry by Marimar White-Espin

[10-year-old Clara] Lazen’s teacher, Kenneth Boehr, introduced Border Star Montessori School’s 5th grade class to the periodic table, molecules and chemical bonds. Lazen found the topic interesting and Boehr gave her the tools she needed to explore the subject.

Equipped with a molecule-building kit, Lazen experimented with the colored wooden balls by creating existing molecules and some of her own.

Lazen approached Boehr and asked if the molecule she created using the kit was real. Unsure of the answer, Boehr emailed his longtime graduate school friend and chemistry professor at HSU, Robert Zoellner.

“Maybe [the molecule] is real and we’ll find out,” Zoellner responded.

Upon further research, Zoellner discovered the particular molecule, tetrakis(nitratoxycarbon) methane, Lazen had created had never been discussed in literature and possibly had never been thought of before.

The significance of the molecule Lazen created is that it has the potential to store energy. The dense structure allows for stable energy storage meaning the molecule can be used to produce energy or as an explosive.

Lazen was excited to hear her discovery could be used as an explosive. “I thought, ‘Wow, it could go boom!’ I could put [the molecule] in a bomb and it could blow up something,” she said.

Lazen’s mother, Lori Schmidt was excited to hear that not only would her daughter be a co-author to the scientific article, but the discovery would be recognized in a scientific journal. “One only dreams as a parent,”

Fun stuff.

Related: 11 Year Old Using Design of ExperimentsScience for KidsEncouraging Curiosity in KidsSarah, aged 3, Learns About Soap

Journal of Emerging Investigators Will Publish Middle and High School Student Research Papers

The Journal of Emerging Investigators is a new journal for publishing research paper and reviews of research papers by middle school and high school students from any country.

The Journal of Emerging Investigators strives to provide students with as much access to original scientific writing as possible. With this in mind, all submissions are covered by an attribution non-commercial, no derivative license. This means that anyone is free to share, copy and distribute an unaltered article for non-commercial purposes.

Graduate students with substantial research experience will review the manuscripts.

All hypothesis driven science is acceptable for research articles. This includes, but is not limited to, life science, physics, chemistry, health, psychology, and physiology. Engineering articles are also accepted as long as there is a clear question and hypothesis being tested.

Hopefully this will encourage some students to give research a try. Advisors may submit items for publication (students have to have an mentor/teacher do the submitting.

Similar journals: The Journal of Experimental Secondary Science, open science 🙂 – Canadian Young Scientist, closed science 🙁

Related: 8-10 Year Olds Research Published in Royal Society JournalYouTube SpaceLab Experiment CompetitionOpen Access Engineering JournalsKids on Scientists: Before and After

20th Annual US First Robotics Competition

If you have a child, niece, nephew, grandchild… who you haven’t been able to convince about the wonders of science maybe the starts on this promo (Justin Timberlake, Snoop Dogg, Justin Bieber…) can help convince them. If you want to convince your grandparents science is cool, then maybe they will like the cameos by Steven Tyler and Bono 😛 This is an effort being pushed by will.i.am (Black Eyed Peas) and Dean Kamen (US First Founder) to promote science and engineering. Since most politicians don’t seem interested in promoting and supporting science anymore maybe musicians can help turn things around.

I have written about US First, it is a great program. It engages children in learning by taping their curiosity and desire to create. I think learning this way is much more natural and fun and affective than what we have too often in schools today. I know I was bored quite often but was told the adults knew best. Well know I am an adult and I think I was right back then: our education system can, and should be greatly improved. Until then, US First, and similar, programs give kids a good environment for learning that keeps their desire to learn intact.

The video spot was created to promote a TV show commemorating the 20th annual US FIRST Robotics competition. Watch the TV show:

Related: Lunacy, FIRST Robotics Challenge 2009For Inspiration and Recognition of Science and Technology (FIRST), 2005 postTest it Out, Experiment by They Might Be GiantsBotball 2009 Finals

YouTube SpaceLab Experiment Competition

YouTube SpaceLab is an open competition inviting 14 – 18 year olds (anywhere in the world) to create an idea for a science experiment in space. You don’t have to actually do the experiment, you just have to record yourself explaining it.

Entries must have be submitted on YouTube by 07:59 GMT on December 8th.

The winning experiments will be conducted on the International Space Station (ISS) and beamed live on YouTube for the whole planet to see.

Winners get the choice to either watch the rocket blast off with your idea on it in Japan or take a specially tailored astronaut training course in Russia when you turn 18. There are other amazing prizes for the runners-up too.

Here is an example entry from 3 students in UK on an experiment to learn about quorum sensing by bacteria in the micro gravity of space.

Related: Google Science Fair 2011 ProjectsBacteria Communicate Using a Chemical Language (quorum sensing)11 Year Old Using Design of ExperimentsResearch by group of 8 to 10 Year Olds Published in Royal Society Journal

I was Interviewed About Encouraging Kids to Pursue Engineering

Amanda Moreno interviewed me about Encouraging Kids to Pursue Engineering over on the Knovel Blog.

What can parents do to cultivate an interest in science in their kids early on?

John Hunter: Ask questions. Answer questions. Explain how things work. Explain why things are done the way they are. Kids want the attention of their parents, and when they are younger they are constantly trying to get it (dad look, mom look, watch me!). They have similar feelings when they are older, but are not as forthright about saying what they want. If you take a sincere interest in their questions, you’ll motivate them to continue pondering how the world works. Make it fun to learn. Kids have an intrinsic motivation to learn. Keeping their curiosity alive is the first step.

So, on the university level, professors generally aren’t student-centric enough. What other factors are discouraging students in the classroom?

JH: I have one belief that is close to heresy. I don’t see why publication has to be so important for professors (if what we are after is good teachers, not authors). …

Read the rest of the interview.

Related: Backyard Wildlife: Sharpshinned HawkQubits Construction ToyWhat Kids can Learn By PlayingEncouraging Curiosity in Kids

Encouraging Curiosity in Kids

How do you help make your children scientifically literate? I think the biggest thing you can do is encourage curiosity.

One way to encourage curiosity it is by answering their questions (and not saying: I am too busy, don’t bother me, don’t ask me?, stop asking why…). I know adults are busy and have all sorts of stuff we are trying to get done; and the question about why I need to wash my hands doesn’t seem worth answering. But I think anytime a kid is asking why is an opportunity to teach and encourage them to keep being curious.

It is very easy to shut off this curiosity, in our society anyway (we do it to the vast majority of people). The biggest difference I see between adults and kids is not maturity or responsibility but curiosity (or lack thereof in adults) and joy (versus adults who seem to be on valium all the time – maybe they are).

As they grow up kids will have lots of science and technology questions that you don’t know the answers to. If you want them to be curious and knowledgeable, put in the effort to find answers with them. You have to help them find the answers in a way that doesn’t turn them off. If you just say – go look it up yourself (which really they can do), maybe the 2% that are going to become scientists will. But most kids will just give up and turn off their curiosity a little bit more (until eventually it is almost gone and they are ready to fit into the adult world). Which is very sad.

Once you get them used to thinking and looking things up they will start to do this on their own. A lot of this just requires thinking (no need to look things up – once a certain base knowledge is achieved). But you need to set that pattern. And it would help if you were curious, thought and learned yourself.

Photo of kids intently studying on a Malaysian beach

My mom with a group of Malaysia kids apparently intent on learning something. I am there, but not visible in this photo. Photo by my father.

While walking in the park, see one of those things you are curious about and ask why does…? It is good to ask kids why and let them think about it and try and answer. Get them in the habit of asking why themselves. And in those cases when no-one knows, take some time and figure it out. Ask some questions (both for yourself – to guide your thinking – and to illustrate how to think about the question and figure things out). If you all can’t find an explanation yourselves, take some time to look it up. Then at dinner, tell everyone what you learned. This will be much more interesting to the kids than forcing them to elaborate on what they did today and help set the idea that curiosity is good and finding explanations is interesting.

It is fun as a kid if your parent is a scientist or engineer (my father was an engineering professor).

You often don’t notice traits about yourself. In the same what I know what red looks like to me, I figure we both see this red shirt you see the red that I do. But maybe you don’t. I tend to constantly be asking myself why. If I see something new (which is many, many times a day – unless I am trapped in some sad treadmill of sameness) I ask why is it that way and then try and answer. I think most of this goes on subconsciously or some barely conscious way. I actually had an example a few months ago when I was visiting home with my brother (who is pretty similar to me).

As we were driving, I had noticed some fairly tall poles that seemed to have really small solar panels on top. I then noticed they were space maybe 20 meters apart. Then saw that there seemed to be a asphalt path along the same line. I then decided, ok, they are probably solar panels to power a light for the path at night. Then my brother asked why are there those small solar panel on top of that pole?

Continue reading

Eliminating NSF Program to Aid K-12 Science Education

Changing American science and engineering education

In exchange for funding for their graduate studies, Kahler and other fellows contribute to the science curriculum in local primary and secondary schools from kindergarten through grade 12. Kahler taught science at Rogers-Herr Middle School in Durham.

He also taught for two summers in India, and in Texas, as part of Duke TIP, the Talent Identification Program, which identifies academically gifted students and provides them with intellectually stimulating opportunities.

Through these teaching experiences in different locations and cultures, Kahler observed several factors that affect the quality of education in American schools. One important factor is the training of teachers. Unfortunately, teachers are sometimes expected to teach science without having received an adequate background in the subject.

STEM fellows helped to address this problem by contributing their expertise and by helping to increase the scientific literacy of students and their teachers.

Kahler says that NSF GK-12 has a strong, positive impact to change this because it simultaneously improves the educational experience of students in primary and secondary school and trains graduate students to communicate and teach effectively.

Unfortunately, the NSF GK-12 program is no longer in the NSF budget for 2012.

Sadly the USA is choosing to speed money on things that are likely much less worthwhile to our future economic well being. This has been a continuing trend for the last few decades so it is not a surprise that the USA is investing less and less in science and engineering education while other countries are adding substantially to their investments (China, Singapore, Korea, India…).

As I have stated before I think the USA is making a big mistake reducing the investment in science and engineering, especially when so many other countries have figured how how smart such investments are. The USA has enjoyed huge advantages economically from science and engineering leadership and will continue to. But the potential full economic advantages are being reduced by our decisions to turn away from science investment (in education and other ways).

Related: The Importance of Science EducationTop Countries for Science and Math Education: Finland, Hong Kong and KoreaEconomic Strength Through Technology Leadership

Periodic Table for Kids

Poster of the periodic table with some illustrations and explanations for kids.

Check out this previous post with a New Visualization of the Periodic Table and see the link in the comment to another variation.

Related: Understanding the Chemistry Behind Cooking2009 Nobel Prize in Chemistry