A natural example of a functioning gear mechanism has been discovered in a common insect – the plant-hopper Issus – showing that evolution developed interlocking cogs long before we did.
The gears in the Issus hind-leg bear remarkable engineering resemblance to those found on every bicycle and inside every car gear-box. Each gear tooth has a rounded corner at the point it connects to the gear strip; a feature identical to man-made gears such as bike gears – essentially a shock-absorbing mechanism to stop teeth from shearing off.
The gear teeth on the opposing hind-legs lock together like those in a car gear-box, ensuring almost complete synchronicity in leg movement – the legs always move within 30 ‘microseconds’ of each other, with one microsecond equal to a millionth of a second.
This is critical for the powerful jumps that are this insect’s primary mode of transport, as even miniscule discrepancies in synchronisation between the velocities of its legs at the point of propulsion would result in “yaw rotation” – causing the Issus to spin hopelessly out of control.
“This precise synchronisation would be impossible to achieve through a nervous system, as neural impulses would take far too long for the extraordinarily tight coordination required,” said lead author Professor Malcolm Burrows, from Cambridge’s Department of Zoology.
“By developing mechanical gears, the Issus can just send nerve signals to its muscles to produce roughly the same amount of force – then if one leg starts to propel the jump the gears will interlock, creating absolute synchronicity.
Interestingly, the mechanistic gears are only found in the insect’s juvenile – or ‘nymph’ – stages, and are lost in the final transition to adulthood. These transitions, called ‘molts’, are when animals cast off rigid skin at key points in their development in order to grow.
It may also be down to the larger size of adults and consequently their ‘trochantera’ – the insect equivalent of the femur or thigh bones. The bigger adult trochantera might allow them to can create enough friction to power the enormous leaps from leaf to leaf without the need for intermeshing gear teeth to drive it, say the scientists.
It’s not yet known why the Issus loses its hind-leg gears on reaching adulthood. The scientists point out that a problem with any gear system is that if one tooth on the gear breaks, the effectiveness of the whole mechanism is damaged. While gear-teeth breakage in nymphs could be repaired in the next molt, any damage in adulthood remains permanent. It is amazing what evolution results in, not only gears but a system that changes to a different solution (maybe, who knows the real “reason”) when the gears solution lack of robustness would create a problem for survivability.
While there are examples of apparently ornamental cogs in the animal kingdom – such as on the shell of the cog wheel turtle or the back of the wheel bug – gears with a functional role either remain elusive or have been rendered defunct by evolution.
Related: Using Bacteria to Power Microscopic Machines – Webcast of a T-cell Killing a Cancerous Cell – Building A Better Bed Bug Trap Using Bean Leaves
In the video above, Professor Malcolm Burrows talks about finding the bugs that led to the science, and working with artists Elizabeth Hobbs and Emily Tracy and members of the community in the London borough of Hackney to produce the film ‘Waterfolk’.