Posts about Universities

$60 Million in Grants for Undergraduate Science Education

The Howard Hughes Medical Institute (HHMI) is challenging colleges and universities to think creatively about how they educate future scientists, science teachers, and a scientifically-literate public. The Institute has invited 215 undergraduate-focused colleges and universities from across the country to apply for a total of $60 million in science education grants. I am very happy that HHMI continues to help provide support for science education.

Sadly USA government leaders (local and national) have chosen to cut the importance they place on science education over the last few decades we have coasted on the gains we made in the 1960s and 1970s. That is no way to succeed. Thankfully a few foundations, with HHMI probably leading the way, and some great schools have kept the USA in a leadership position, but that leadership shrinks each year. And at the primary and secondary school level the USA dropped far back in the pack decades ago for science eduction The top countries in primary and secondary science education are now Finland, Hong Kong and Korea.

Since 1988, the Howard Hughes Medical Institute has awarded $820 million to 264 colleges and universities to support science education. Those grants have generally been awarded through two separate but complementary efforts, one aimed at undergraduate-focused institutions and the other at research universities. HHMI support has enabled more than 80,000 students nationwide to work in research labs and developed programs that have helped 95,000 K-12 teachers learn how to teach science more effectively.

The new grants will range from $800,000 to $1.6 million over four years for individual institutions and up to $4.8 million over four years for those applying jointly.

Related: Science Courses for the Next Generation$60 Million for Science Teaching at Liberal Arts Colleges in 2008The Importance of Science EducationGenomics Course For College Freshman Supported by HHMI at 12 Universities$600 Million for Basic Biomedical ResearchScience and technology leadership

The biggest change in the new 2012 competition is the requirement that applicants focus on a single educational goal that unites their proposed science education program. In the past, HHMI’s grants have allowed applicants to submit projects in four categories: student research, faculty development, curriculum and laboratory development, and outreach. Although schools were not expected to put forward a program in every category, Asai notes the modular design of the grant competition often led schools to “check the boxes” rather than encouraging them to think strategically about how these activities can help them reach an overarching science education objective.
Continue reading

Science Courses for the Next Generation

During the last three years, the Howard Hughes Medical Institute (HHMI) has recruited 44 colleges and universities across the country to join its Science Education Alliance (SEA), which is changing how freshmen learn about science by providing them with an authentic, classroom-based research experience. Now professors from three schools offering the SEA course will help create the next generation of research-based courses that will extend the program’s reach to upperclassmen.

These “SEA sabbaticals” are another step toward HHMI’s long-term goal of making the SEA a resource for science educators nationwide. When HHMI unveiled the SEA program in 2007, it committed $4 million over four years to the development and rollout of the Alliance’s first course: the National Genomics Research Initiative. That year-long course has enabled freshmen to make real discoveries by doing research on phage, which are viruses that infect bacteria. The research-based laboratory course provides beginning college students with a true research experience that is teaching them how to approach scientific problems creatively and will hopefully solidify their interest in a career in science.

The freshmen students in the SEA course work closely with faculty to design experiments and make scientific discoveries. Many say the experience has changed their view of science. But it soon became apparent that one set of courses would not be enough to continue challenging students as they progressed through college. So HHMI decided to look for creative solutions to that problem.

HHMI invited the 27 schools currently participating in the SEA to apply, and three were accepted to develop new courses. These new projects are focused on designing a curriculum that will pick up where the virus genomics class ends.

Faculty from Cabrini College in Radnor, Pennsylvania, will develop a cellular and molecular biology course in which students will examine phage genes and determine which are essential for the virus’s survival. In a biochemistry course, students will purify and characterize the proteins produced by the genes to determine their function.

University of Louisiana at Monroe’s team will create three modules that could be used in several courses for juniors and seniors. In one, they will create lessons in which students develop methods to determine how their phages reproduce after they enter bacteria. Students would look at genetic markers to determine how phages should be classified into related “clusters” in a second module. Students taking the third course would explore the best way to determine whether genes are essential to the survival of the virus.

University of Puerto Rico, Cayey faculty will create a course to help students examine and characterize various phage proteins. Proteins of interest include those that make up the virus’s protective coating, and those that are activated once infection has begun.

HHMI continue to fund huge amounts of great work in science.

Full press release: Science Education Alliance Builds Research Courses for the Next Generation

Related: $60 Million for Science Teaching at Liberal Arts CollegesHHMI Expands Support of Postdoctoral Scientists$600 Million for Basic Biomedical ResearchHoward Hughes Medical Institute Takes Big Open Access Step

Green Technology Innovation by College Engineering Students

With prizes totaling more than $100,000 in value, this year’s Climate Leadership Challenge is believed to be the most lucrative college or university competition of its kind in the country. The contest was open to all UW-Madison students.

A device that would help provide electricity efficiently and at low cost in rural areas of developing countries took the top prize – $50,000 – this week in a student competition at the University of Wisconsin-Madison for innovative ideas to counteract climate change.

The “microformer” is the brainchild of Jonathan Lee, Dan Ludois, and Patricio Mendoza, all graduate students in electrical engineering. Besides the cash prize, they will receive a promotional trip worth $5,000 and an option for a free one-year lease in the University Research Park’s new Metro Innovation Center on Madison’s east side.

“We really want to see implementation of the best ideas offered,” said Tracey Holloway, director of the Nelson Institute Center for Sustainability and the Global Environment at UW-Madison, which staged the contest for the second year in a row. “The purpose of this competition is to make an impact on climate change.”

The runner-up for the “most action-ready idea” was a proposal to promote the use of oil from Jatropha curcas plants to fuel special cooking stoves in places like Haiti. UW-Madison seniors Eyleen Chou (mechanical engineering), Jason Lohr (electrical engineering), Tyler Lark (biomedical engineering/mathematics) won $10,000 for their scheme to reduce deforestation by lowering demand for wood charcoal as a cooking fuel.

CORE Concept, a technology that would cut emissions from internal combustion engines by using a greater variety of fuels, won mechanical engineering doctoral students Sage Kokjohn, Derek Splitter, and Reed Hanson $15,000 as the “most innovative technical solution.”

SnowShoe, a smart phone application that would enable shoppers to check the carbon footprint of any item in a grocery store by scanning its bar code, won $15,000 as the “most innovative non-technical solution.” Graduate students Claus Moberg (atmospheric and oceanic science), Jami Morton (environment and resources), and Matt Leudtke (civil and environmental engineering) submitted the idea.

Other finalists were REDCASH, a plan to recycle desalination wastewater for carbon sequestration and hydrogen fuel production, by doctoral student Eric Downes (biophysics) and senior Ian Olson (physics/engineering physics); and Switch, an energy management system that integrates feedback and incentives into social gaming to reduce personal energy use, by doctoral students David Zaks (environment and resources) and Elizabeth Bagley (environment and resources/educational psychology).

Related: University of Michigan Wins Solar Car Challenge AgainCollegiate Inventors Competition$10 Million X Prize for 100 MPG Car

University of Wisconsin-Stout Wins 2010 Rube Goldberg Contest

University of Wisconsin-Stout wins 2010 Rube Goldberg contest

The team’s machine was called “Valley of the Kings” and had an Egyptian theme, telling a tale of events following the death of King Tut.

The task for the Rube Goldberg machines this year was to dispense sanitizer into a hand. Wisconsin-Stout’s machine dispensed the sanitizer into a mummy’s hand. The Rube Goldberg competition, sponsored by Phi Chapter of Theta Tau fraternity, rewards machines that most effectively combine creativity with inefficiency and complexity.

Machines must use at least 20 steps to complete the task in no more than two minutes. Teams have three tries to complete two runs. Points are deducted if students have to assist the machine once it has started. The Wisconsin-Stout machine has 120 steps. The team completed two perfect runs with no interventions in about a minute and a half each.

St. Olaf’ College of Northfield, Minn., last year’s national winner, took second place with a medieval-themed machine. Pennsylvania State University placed third with an “Indiana Jones” theme.

Related: Rube Goldberg Machine Contest (2005)Goldbergian Flash Fits Rube Goldberg Web SiteBotball 2009 FinalsUW- Madison Wins 4th Concrete Canoe Competition

New Funding for arXiv Online Scientific Repository

The Cornell University Library is broadening the funding base for the arVix online scientific repository. Nearly 600,000 e-prints – research articles published online in physics, mathematics, statistics, computer science and related disciplines – now reside in arXiv, which is an open information source for hundreds of thousands of scientific researchers.

arXiv will remain free for readers and submitters, but the Library has established a voluntary, collaborative business model to engage institutions that benefit most from arXiv. “Keeping an open-access resource like arXiv sustainable means not only covering its costs, but also continuing to enhance its value, and that kind of financial commitment is beyond a single institution’s resources,” said Oya Rieger, Associate University Librarian for Information Technologies. “If a case can be made for any repository being community-supported, arXiv has to be at the top of the list.”

The 200 institutions that use arXiv most heavily account for more than 75 percent of institutional downloads. Cornell is asking these institutions for financial support in the form of annual contributions, and most of the top 25 have already committed to helping arXiv.

arXiv’s original dissemination model represented the first significant means to provide expedited access to scientific research well ahead of formal publication. Researchers upload their own articles to arXiv, and they are usually made available to the public the next day. arXiv, founded by physics professor Paul Ginsparg, has about 400,000 users and serves more than 2.5 million article downloads per month. Its 101,000 registered submitters live in nearly 200 countries.

arXiv is interconnected with many other scholarly information resources. These include the INSPIRE system being developed by supporting high-energy physics laboratories CERN, DESY, Fermilab and SLAC, as well as the Astrophysics Data System at Harvard University, another supporting institution. Read details about the operating principles of the new structure.

Related: Toward a More Open Scientific CultureSo, You Want to be an Astrophysicist?MIT Faculty Open Access to Their Scholarly ArticlesScience Commons: Making Scientific Research Re-useful

Siftable Modular Computers

Pretty cool. I must admit I don’t really see how this would function outside of specifically designed situation. I can imagine it could be very cool for education, especially of young kids. Siftables act in concert to form a single interface: users physically manipulate them – piling, grouping, sorting – to interact with digital information and media. David Merrill and Jeevan Kalanithi originally created Siftables at the MIT Media Lab and have formed a company to commercialize the product and have received a grant from NSF to continue the work.

Related: Cool Mechanical Simulation SystemVideo Cat CamArduino: Open Source Programmable HardwareWhat Kids can Learn

Cuts for British Science

Cuts mark ‘sad day for British science’

Britain’s physics community is reeling from a “disastrous” day of funding cuts that will force scientists to withdraw from major research facilities and see PhD studentships fall by a quarter. Space missions and projects across astronomy, nuclear and particle physics are being cancelled to save at least £115m, the Science and Technology Facilities Council (STFC) said today.

Fellowships and student grants for PhD projects will be cut by 25% from next year. The announcement has appalled senior physicists who warn the cuts threaten Britain’s future as a leading player in science.

In February, Gordon Brown delivered his first speech on science in Oxford and stated: “The downturn is no time to slow down our investment in science but to build more vigorously for the future.”

Politicians like to talk about funding science investment. And they do so to some extent. However, they are more reluctant to actually spend money than to talk about the wonders of science. Several countries in Asia are not just talking, they continue to invest, large amounts of money. The USA seems to be willing to put some money (not the kind of funds paid to protect bankers bonuses but significant amounts). Still the amounts the USA is investing is, I believe, falling as a percentage of global investment.

Related: posts on funding investments in scienceBritain’s Doctors of InnovationEconomic Strength Through Technology LeadershipScience and Engineering in Global EconomicsScience and Engineering Workforce IndicatorsThe value of investing in science and engineeringSaving FermilabNanotechnology Investment as Strategic National Economic Policy

White Paper on Engineering Leadership Education

Engineering leadership education is emerging as a topic in engineering institutions worldwide. But the review of international “best practices” in engineering leadership education says a lack of resources, expertise, and formal networks in the nascent field is causing concern in a profession threatened by a diminishing focus on the notion of the “engineer-as-doer.”

Commissioned by the Bernard M. Gordon-MIT Engineering Leadership Program, the new white paper, Engineering Leadership Education: A Snapshot”© Review”© of International Good”© Practice, reveals that the vast majority of engineering leadership education programs are based within the U.S. and most are relatively new (developed in the last five years). The white paper highlights the distinct divide between the U.S. and the rest of the world in both attitude and approach to engineering leadership education.

“As a sub-discipline, engineering leadership education is not yet on the radar of most engineering education experts outside the U.S.,” said Dr. Edward Crawley, Director of the Bernard M. Gordon-MIT Engineering Leadership Program. “Certainly for many of the programs outside the U.S., there’s some discomfort with the notion of ‘leadership education’, as they feel this concept runs counter to their educational culture of inclusiveness and equality.”

The report was conducted by Dr. Ruth Graham in a series of interviews between September 2008 and March 2009. Dr. Graham investigated more than 40 programs, seeking to provide an insight into current practice, highlight international variations in approach, and identify examples of good practice.

One major ”©current ”©trend”© in ”©engineering”© leadership ”©education”© is ”©the ”©development ”©of”© the ”©students’”© global ”©awareness”© and”© their ”©ability ”©to ”©work ”©on ”©complex”©cross”national”© projects”© – ”©which”© is”© seen ”©by many”© as”© the ”©environment”© within ”©which”© the”© engineering ”©leader”© of ”©the ”©future ”©will ”©need ”©to ”©operate. ”©
Many”© of ”©the ”©programs ”©which ”©were ”©most ”©highly ”©rated ”©by ”©interviewees ”©incorporate ”©some”© global”© elements ”©either ”©through ”©international ”©travel, ”©remote”© link”ups”© with”© overseas”© universities/companies ”©or ”©project”© briefs”© involving ”©an”© international ”©or”© cross”cultural”© context.”© ”©The trend ”©towards”© a ”©more”© ‘global’ ”©view”© of ”©leadership ”©education”© was ”©seen ”©by ”©many ”©of ”©the”© interviewees”© as”© one”© that ”©would”© continue.”©
Continue reading

Another Survey Shows Engineering Degree Results in the Highest Pay

The PayScale salary survey looked at both starting and mid career salary. Engineering topped both measures. Of the top 10 mid career salaries, 7 were engineering degrees – including the top 4. The survey is based upon data for full-time employees in the United States who possess a Bachelor’s degree and no higher degrees and have majored in the subjects listed above.

The top 11 paying degrees are:

Highest Paid Undergrad College Degrees
Degree Starting Median Salary Mid-Career Median Salary
Aerospace Engineering $59,600 $109,000
Chemical Engineering $65,700 $107,000
Computer Engineering $61,700 $105,000
Electrical Engineering $60,200 $102,000
Economics $50,200 $101,000
Physics $51,100 $98,800
Mechanical Engineering $58,900 $98,300
Computer Science $56,400 $97,400
Industrial Engineering $57,100 $95,000
Environmental Engineering $53,400 $94,500
Statistics $48,600 $94,500

Related: Engineering Graduates Paid Well Again in 2008High Pay for Engineering Graduates in 2007Engineering Graduates Get Top Salary Offers in 2006posts on science and engineering careersposts on engineering education

Research findings Contradict Myth of High Engineering Dropout Rate

Research findings suggest that, contrary to popular belief, engineering does not have a higher dropout rate than other majors and women do just as well as men, information that could lead to a strategy for boosting the number of U.S. engineering graduates.

“Education lore has always told us that students – particularly women – drop out of undergraduate engineering programs more often than students in other fields,” said Matthew Ohland, an associate professor in Purdue University’s School of Engineering Education. “Well, it turns out that neither is true. Engineering programs, on average, retain just as many students as other programs do, and once women get to college they’re just as likely to stick around in engineering as are their male counterparts.”

The research also shows that hardly any students switch to engineering from other majors, pointing to a potential strategy for increasing the number of U.S. engineering graduates, Ohland said.

“A huge message in these findings is that engineering students are amazingly like those in other disciplines, but we need to do more to attract students to engineering programs,” he said. “If you look at who graduates with a degree in social sciences, 50 percent of them started in social sciences, and for other sciences it’s about 60 percent. If you look at who graduates with a degree in engineering, however, 93 percent of them started in engineering. The road is narrow for students to migrate into engineering from other majors.”

Findings were drawn largely from a database that includes 70,000 engineering students from nine institutions in the southeastern United States. Ohland manages the database, called the Multiple-Institution Database for Investigating Engineering Development, which followed students over a 17-year period ending in 2005.

Data show that the nine institutions vary dramatically in how well they retain engineering students over eight semesters, ranging from 66 percent to 37 percent. Those findings indicate policies and practices at some institutions may serve to retain students better than those at other institutions.

The findings suggest educators should develop a two-pronged approach to increase the number of engineering graduates: identify which programs best retain students and determine why they are effective, and develop programs and policies that allow students to more easily transfer into engineering from other majors.

Related: S&P 500 CEOs are Engineering GraduatesUSA Under-counting Engineering GraduatesNational Science Board Report on Improving Engineering EducationWomen Choosing Other Fields Over Engineering and MathWebcast: Engineering Education in the 21st Century
Continue reading

Data Analysts Captivated by R’s Power

Data Analysts Captivated by R’s Power

data mining has entered a golden age, whether being used to set ad prices, find new drugs more quickly or fine-tune financial models. Companies as diverse as Google, Pfizer, Merck, Bank of America, the InterContinental Hotels Group and Shell use it.

Close to 1,600 different packages reside on just one of the many Web sites devoted to R, and the number of packages has grown exponentially. One package, called BiodiversityR, offers a graphical interface aimed at making calculations of environmental trends easier.

Another package, called Emu, analyzes speech patterns, while GenABEL is used to study the human genome. The financial services community has demonstrated a particular affinity for R; dozens of packages exist for derivatives analysis alone. “The great beauty of R is that you can modify it to do all sorts of things,” said Hal Varian, chief economist at Google. “And you have a lot of prepackaged stuff that’s already available, so you’re standing on the shoulders of giants.”

R first appeared in 1996, when the statistics professors Ross Ihaka and Robert Gentleman of the University of Auckland in New Zealand released the code as a free software package. According to them, the notion of devising something like R sprang up during a hallway conversation. They both wanted technology better suited for their statistics students, who needed to analyze data and produce graphical models of the information. Most comparable software had been designed by computer scientists and proved hard to use.

R is another example of great, free, open source software. See R packages for Statistics for Experimenters.

via: R in the news

Related: Mistakes in Experimental Design and InterpretationData Based Decision Making at GoogleFreeware Math ProgramsHow Large Quantities of Information Change Everything

  • Recent Comments:

    • innovative engineering: Thanks for the sort of terrific video
    • Cortney: Hey Their, Great job here on microscopic arsenal of weapons and warriors I read a lot of blog...
    • Alex: Really nice post. Thanks for sharing with us..
    • syiar ramadhan rahmatan: this discovery is very amazing. a farmer can profit in the cold of winter
    • Rahmatan Pandu Kemanusiaan: a remarkable discovery, the farmer now has a lot of technology to use so that...
    • Yayasan Anak Yatim: the cute and cute little animal squirrel, but here squirrels are often hunted and shot...
    • Alex (from the UK): Wow its amazing whats happening with medicine and technology these days. Drones are the...
    • Shahid: Obesity is rising more in developing countries like India. Here most peoples are likely to get fat...
  • Recent Trackbacks:

  • Links