Posts about undergraduate education

Increasing the Undergraduate Study of Programing and Software

There is a role for computer science. It also seems to me there is a much larger role for some study of computing (programing, databases, software, technology) that isn’t actually computer science. Where exactly this should go into an undergraduate school, I am not sure. But it seems to me, an understanding of computing is extremely important to those that want to lead in the next 40 years and we should be able to put more of that into undergraduate studies.

Computer Studies Made Cool, on Film and Now on Campus

The number of computer science degrees awarded in the United States began rising in 2010, and will reach 11,000 this year, after plummeting each year since the end of the dot-com bubble in 2004, according to the Computing Research Association, which tracks enrollment and degrees. Enrollment in the major peaked around 2000, with the most degrees — 21,000 — awarded four years later. The number of students who are pursuing the degree but have not yet declared their major increased by 50 percent last year.

To capitalize on the growing cachet of the tech industry, colleges nationwide, including Stanford, the University of Washington and the University of Southern California, have recently revamped their computer science curriculums to attract iPhone and Facebook-obsessed students, and to banish the perception of the computer scientist as a geek typing code in a basement.

Even universities not known for computer science or engineering, like Yale, are seizing the moment. The deans of the Ivy League engineering schools recently started meeting to hatch ways to market “the Ivy engineer.”

The new curriculums emphasize the breadth of careers that use computer science, as diverse as finance and linguistics, and the practical results of engineering, like iPhone apps, Pixar films and robots, a world away from the more theory-oriented curriculums of the past.

I think the basic thrust of this move is good. I am not sure if it is really right to expand computer science to make it more attractive or to instead create something else. Computer engineering would seem to be one option, but I am not sure that is really right either. We do need computer scientists, but frankly we need maybe 100 or 1,000 times more programmers. And we need many other UX designers, program managers that understanding technology and programing, database administrators, system administrators… and really these people don’t need computer science backgrounds.

On a separate topic we also need better ways for everyone to understand technology better. We need good course for those majoring in economics, business, philosophy, English, political science… Understanding technology and how it works is fundamental to managing in the world we live in today and will live in.

Related: Programming Grads Meet a Skills Gap in the Real WorldHow To Become A Software Engineer/ProgrammerEngineering Again Dominates The Highest Paying College Degree ProgramsWant to be a Computer Game Programmer?software programming posts on my management blog

Engineering Again Dominates The Highest Paying College Degree Programs

As usual most of the highest paying undergraduate college degrees in the USA are engineering. Based on data from payscale, all of the top 10 highest paying fields are in engineering. The highest non-engineering fields are applied mathematics and computer science. Petroleum Engineering salaries have exploded over the last few years to $93,000 for a starting median salary, more than $30,000 above the next highest paying degree.

Mid-career median salaries follow the same tendency for engineering degrees, though in this case, 3 of the top 10 salaries (15 years into a career) are for those with non-engineering degrees: applied mathematics, physics and economics.

Highest Paid Undergrad College Degrees
Degree Starting Median Salary Mid-Career Median Salary 2009 starting salary
Petroleum Engineering $93,000 $157,000
Chemical Engineering $64,800 $108,000 $65,700
Nuclear Engineering $63,900 $104,000
Computer Engineering $61,200 $99,500 $61,700
Electrical Engineering $60,800 $104,000 $60,200
Aerospace Engineering $59,400 $108,000 $59,600
Material Science and Engineering $59,400 $93,600
Industrial Engineering $58,200 $97,400 $57,100
Mechanical Engineering $58,300 $97,400 $58,900
Software Engineering $56,700 $91,300
Applied Mathematics $56,400 $101,000
Computer Science $56,200 $97,700 $56,400

Related: PayScale Survey Shows Engineering Degree Results in the Highest Pay (2009)Engineering Majors Hold 8 of Top 10 Highest Paid Majors (2010)Engineering Graduates Get Top Salary Offers in 2006Shortage of Petroleum Engineers (2006)10 Jobs That Provide a Great Return on Investment

More degrees are shown in the following table, but this table doesn’t include all the degree; it just shows a sample of the rest of the degrees.
Continue reading

$60 Million in Grants for Undergraduate Science Education

The Howard Hughes Medical Institute (HHMI) is challenging colleges and universities to think creatively about how they educate future scientists, science teachers, and a scientifically-literate public. The Institute has invited 215 undergraduate-focused colleges and universities from across the country to apply for a total of $60 million in science education grants. I am very happy that HHMI continues to help provide support for science education.

Sadly USA government leaders (local and national) have chosen to cut the importance they place on science education over the last few decades we have coasted on the gains we made in the 1960s and 1970s. That is no way to succeed. Thankfully a few foundations, with HHMI probably leading the way, and some great schools have kept the USA in a leadership position, but that leadership shrinks each year. And at the primary and secondary school level the USA dropped far back in the pack decades ago for science eduction The top countries in primary and secondary science education are now Finland, Hong Kong and Korea.

Since 1988, the Howard Hughes Medical Institute has awarded $820 million to 264 colleges and universities to support science education. Those grants have generally been awarded through two separate but complementary efforts, one aimed at undergraduate-focused institutions and the other at research universities. HHMI support has enabled more than 80,000 students nationwide to work in research labs and developed programs that have helped 95,000 K-12 teachers learn how to teach science more effectively.

The new grants will range from $800,000 to $1.6 million over four years for individual institutions and up to $4.8 million over four years for those applying jointly.

Related: Science Courses for the Next Generation$60 Million for Science Teaching at Liberal Arts Colleges in 2008The Importance of Science EducationGenomics Course For College Freshman Supported by HHMI at 12 Universities$600 Million for Basic Biomedical ResearchScience and technology leadership

The biggest change in the new 2012 competition is the requirement that applicants focus on a single educational goal that unites their proposed science education program. In the past, HHMI’s grants have allowed applicants to submit projects in four categories: student research, faculty development, curriculum and laboratory development, and outreach. Although schools were not expected to put forward a program in every category, Asai notes the modular design of the grant competition often led schools to “check the boxes” rather than encouraging them to think strategically about how these activities can help them reach an overarching science education objective.
Continue reading

White Paper on Engineering Leadership Education

Engineering leadership education is emerging as a topic in engineering institutions worldwide. But the review of international “best practices” in engineering leadership education says a lack of resources, expertise, and formal networks in the nascent field is causing concern in a profession threatened by a diminishing focus on the notion of the “engineer-as-doer.”

Commissioned by the Bernard M. Gordon-MIT Engineering Leadership Program, the new white paper, Engineering Leadership Education: A Snapshot”© Review”© of International Good”© Practice, reveals that the vast majority of engineering leadership education programs are based within the U.S. and most are relatively new (developed in the last five years). The white paper highlights the distinct divide between the U.S. and the rest of the world in both attitude and approach to engineering leadership education.

“As a sub-discipline, engineering leadership education is not yet on the radar of most engineering education experts outside the U.S.,” said Dr. Edward Crawley, Director of the Bernard M. Gordon-MIT Engineering Leadership Program. “Certainly for many of the programs outside the U.S., there’s some discomfort with the notion of ‘leadership education’, as they feel this concept runs counter to their educational culture of inclusiveness and equality.”

The report was conducted by Dr. Ruth Graham in a series of interviews between September 2008 and March 2009. Dr. Graham investigated more than 40 programs, seeking to provide an insight into current practice, highlight international variations in approach, and identify examples of good practice.

One major ”©current ”©trend”© in ”©engineering”© leadership ”©education”© is ”©the ”©development ”©of”© the ”©students’”© global ”©awareness”© and”© their ”©ability ”©to ”©work ”©on ”©complex”©cross”national”© projects”© – ”©which”© is”© seen ”©by many”© as”© the ”©environment”© within ”©which”© the”© engineering ”©leader”© of ”©the ”©future ”©will ”©need ”©to ”©operate. ”©
Many”© of ”©the ”©programs ”©which ”©were ”©most ”©highly ”©rated ”©by ”©interviewees ”©incorporate ”©some”© global”© elements ”©either ”©through ”©international ”©travel, ”©remote”© link”ups”© with”© overseas”© universities/companies ”©or ”©project”© briefs”© involving ”©an”© international ”©or”© cross”cultural”© context.”© ”©The trend ”©towards”© a ”©more”© ‘global’ ”©view”© of ”©leadership ”©education”© was ”©seen ”©by ”©many ”©of ”©the”© interviewees”© as”© one”© that ”©would”© continue.”©
Continue reading

Another Survey Shows Engineering Degree Results in the Highest Pay

The PayScale salary survey looked at both starting and mid career salary. Engineering topped both measures. Of the top 10 mid career salaries, 7 were engineering degrees – including the top 4. The survey is based upon data for full-time employees in the United States who possess a Bachelor’s degree and no higher degrees and have majored in the subjects listed above.

The top 11 paying degrees are:

Highest Paid Undergrad College Degrees
Degree Starting Median Salary Mid-Career Median Salary
Aerospace Engineering $59,600 $109,000
Chemical Engineering $65,700 $107,000
Computer Engineering $61,700 $105,000
Electrical Engineering $60,200 $102,000
Economics $50,200 $101,000
Physics $51,100 $98,800
Mechanical Engineering $58,900 $98,300
Computer Science $56,400 $97,400
Industrial Engineering $57,100 $95,000
Environmental Engineering $53,400 $94,500
Statistics $48,600 $94,500

Related: Engineering Graduates Paid Well Again in 2008High Pay for Engineering Graduates in 2007Engineering Graduates Get Top Salary Offers in 2006posts on science and engineering careersposts on engineering education

Research findings Contradict Myth of High Engineering Dropout Rate

Research findings suggest that, contrary to popular belief, engineering does not have a higher dropout rate than other majors and women do just as well as men, information that could lead to a strategy for boosting the number of U.S. engineering graduates.

“Education lore has always told us that students – particularly women – drop out of undergraduate engineering programs more often than students in other fields,” said Matthew Ohland, an associate professor in Purdue University’s School of Engineering Education. “Well, it turns out that neither is true. Engineering programs, on average, retain just as many students as other programs do, and once women get to college they’re just as likely to stick around in engineering as are their male counterparts.”

The research also shows that hardly any students switch to engineering from other majors, pointing to a potential strategy for increasing the number of U.S. engineering graduates, Ohland said.

“A huge message in these findings is that engineering students are amazingly like those in other disciplines, but we need to do more to attract students to engineering programs,” he said. “If you look at who graduates with a degree in social sciences, 50 percent of them started in social sciences, and for other sciences it’s about 60 percent. If you look at who graduates with a degree in engineering, however, 93 percent of them started in engineering. The road is narrow for students to migrate into engineering from other majors.”

Findings were drawn largely from a database that includes 70,000 engineering students from nine institutions in the southeastern United States. Ohland manages the database, called the Multiple-Institution Database for Investigating Engineering Development, which followed students over a 17-year period ending in 2005.

Data show that the nine institutions vary dramatically in how well they retain engineering students over eight semesters, ranging from 66 percent to 37 percent. Those findings indicate policies and practices at some institutions may serve to retain students better than those at other institutions.

The findings suggest educators should develop a two-pronged approach to increase the number of engineering graduates: identify which programs best retain students and determine why they are effective, and develop programs and policies that allow students to more easily transfer into engineering from other majors.

Related: S&P 500 CEOs are Engineering GraduatesUSA Under-counting Engineering GraduatesNational Science Board Report on Improving Engineering EducationWomen Choosing Other Fields Over Engineering and MathWebcast: Engineering Education in the 21st Century
Continue reading

How To Become A Software Engineer/Programmer

How To Become A Software Engineer/Programmer

my advice for budding software engineers is this.

1) Know that you love software before you commit to it. You’ll know when you take your first pseudocode class: a clear division forms between the people who get it and the people who don’t. If you’re in the “don’t” section, choose another career.

2) If you don’t like teaching yourself new things, the skills you learn today will be irrelevant in less than a decade. Accept the commitment to learn throughout your career as a coder, or accept your eventual fate as a has-been.

3) College degrees matter less than hands-on knowledge and time spent at the keyboard. I outpaced my entire class in college because I bought my own programming books that deviated from the coursework, and as a result I learned things they were not teaching in school.

5) Early on, decide if you want to focus on application development or software engineering. Application development deals with making user interfaces, interfacing different systems together, solving business process problems, and exposing applications to the outside world (i.e. web services and other remoting techniques). Software engineering deals with creation of utilities and processes that support information processing, tends to be more math intensive, requires a lower-level understanding of the trade, and rarely deals with the systems that expose the software to an end user. There are core differences in these two disciplines and 100 shades in between, so figure out what you like.

Good blog post; those thinking of a career in software development should read the whole thing. By the way if you are a programmer already that loves it and looking for a new position: my work is hiring a Ruby on Rails developer.

Related: Joy in Work, Software DevelopmentThe Software Developer Labor MarketA Career in Computer ProgrammingThe Manager FAQIT Talent Shortage, or Management Failure?

Engineering Students Increasing at Universities

Engineering suddenly hot at universities

Across the United States, enrollment in engineering programs has risen to levels not seen in three decades. The recession appears to be one factor, as students and their parents look for dependable careers. But some education officials detect a shift in opinion about the profession itself, as global warming and stem-cell research make fields like chemical and bioengineering more than just wise choices for job-seekers – but fashionable ones, too.

Many students are bringing to engineering a heightened sense of social responsibility and a desire “to go out and make a difference in the world,” says Joseph Helble, dean of the Thayer School of Engineering at Dartmouth College in Hanover, N.H., where enrollment in introductory undergraduate courses is 30 percent above the five-year average.

Nationally, enrollment in undergraduate engineering programs rose 3 percent in 2007 and 4.5 percent 2008, according to the American Association of Engineering Education. Meanwhile, enrollment in masters’ degree programs rose 7 percent in 2007 and 2 percent in 2008. In the fall of 2008, 91,489 masters degree students and 403,193 undergraduates were studying engineering at US universities and colleges.

Skeptics note that engineering remains a low priority for US students: Among the 25 top engineer-producing countries, the United States ranks No. 22 on a per capita basis.

Increased engineering education is good news for future economic growth. Hopefully this trend can continue.

Related: Webcast: Engineering Education in the 21st CenturyMany S&P 500 CEOs are Engineering GraduatesWomen Choosing Other Fields Over Engineering and MathEngineering Education Study DebateScience and Engineering in Global Economics

Carnegie Foundation Calls for Overhaul of Engineering Education

Yet another call for the overhaul of engineering eduction. This time in a Carnegie Foundation Report

The nation’s engineering schools are using outdated educational practices that focus too heavily on imparting technical knowledge and do not do enough to prepare undergraduate students for the profession

in the midst of worldwide transformation of the engineering profession, undergraduate engineering programs in the United States continue to approach problem-solving and knowledge acquisition in an outdated manner. Moreover, engineering programs’ solution to improving the education they offer has been simply to add more courses, rather than reconsidering the design of their programs.

Instead of having a “jam-packed curriculum focused on technical knowledge,” engineering programs should be doing more to help students develop analytical reasoning, practical skills, and professional judgment, the report says.

“We are calling for a new model that will involve fundamentally rethinking the role and even the makeup of the faculty,”

A summary is available online and worth reading for those interested in undergraduate engineering education. I question the wisdom of a foundation urging innovation and then telling people to buy order their book to lean more. If a foundation wants to drive change today, I would think you do so by making material available online easily. Obviously they disagree.

Related: William Wulf Webcast on Engineering Education in the 21st CenturyEducating the Engineer of 2020: NAE ReportReforming Engineering Education by NAEApplied Engineering EducationInnovative Science and Engineering Higher EducationEducating Engineers for 2020 and BeyondToward a More Open Scientific Culture

Documentary on 5 Women Majoring in Science and Math at Ohio State

In the clip, Jennifer Jones, a civil engineering student who talks about her challenges and determination to overcome obstacles in her honors program at Ohio State University. The clip is from Gender Chip Project, a documentary following 5 women majoring in the sciences, engineering and math at Ohio State University.

Related: Women Working in ScienceWomen Choosing Other Fields Over Engineering and MathGirls in Science and EngineeringFixing Engineering’s Gender Gap

Loan Forgiveness Program for Engineering Students

Update (2011): sadly politicians decided though they can give billions in welfare to investment banks and billions in tax breaks to those giving politicians lots of cash they didn’t want to help out engineering students. I actually wouldn’t have a big problem with this decision (to not fund this program) if it was symptomatic of frugal actions by those we entrust with leading our government. Given how frivolously they reward those that give them lots of cash for their campaigns (or pay as soon as they and their staff take jobs with organizations they gave huge benefits to) I think not funding this very small cost is foolish. This is the type of program I think smart countries will adopt (the types of policies the SUA adopted in the 1960’s and lately countries like Singapore, Korea, China have been adopting to encourage science and engineering leadership for the next generation).

Engineering students would receive up to $10,000 in student loan forgiveness under legislation just passed by Congress that the president is expected to sign. The Higher Education Reauthorization and College Opportunity Act of 2008 creates a new program to provide financial incentives for professions in areas of national need including engineering.

Engineering students would qualify for up to $10,000 in credit against their outstanding student loan obligation following graduation and entry into the engineering, technology, applied sciences, or mathematics (and other areas too) workforce. The program authorizes up to $2,000 per year of schooling.

The legislation also includes the Robert C. Byrd American Competitiveness program (an adjustment to the existing program):

a Mathematics and Science Honors Scholarship program for students who are earning baccalaureate or advanced degrees in science, mathematics, or engineering and who agree to serve for five consecutive years in a field relevant to such degree; (2) a Mathematics and Science Incentive program under which the Secretary assumes the obligation to pay the interest due on FFELs and DLs by individuals who agree to serve for five consecutive years as highly qualified teachers of science, technology, engineering or mathematics within high need LEAs, or as mathematics, science, or engineering professionals

Related: Science and Engineering Scholarships and FellowshipsCongress Clears Loan Forgiveness Program To Address Engineer ShortageScientists and Engineers in CongressNSF Undergraduate Scholarships in Science, Technology, Engineering, and Math