Posts about brain

Elephants Learn to Cooperate to Reach Their Objective

This clip shows elephants learning to work together to achieve what they can’t achieve alone (from BBC’s Super Smart Animals). It is interesting to see what animals are capable of. See the related post links for more amazing animal behavior.

Related: Insightful Problem Solving in an Asian Elephant (2007)Crows can Perform as Well as 7 to 10-year-olds on cause-and-effect Water Displacement TasksBeehive Fence Protects Farms from ElephantsCapuchin Monkeys Don’t Like Being Paid Less Than Their PeersFriday Fun: Bird Using Bait to Fish

Chimpanzees Solving Numerical Memory Test Better Than People

I can’t even see all the numbers before they disappear. But chimpanzees are shown seeing a flash of 9 numbers on a screen and then pointing to where they were on the screen in order from 1 to 9. Human test subjects can’t even do 5 numbers most of the time.

Related: Chimpanzees Use Spears to Hunt Bush BabiesOrangutan Attempts to Hunt Fish with SpearCrows can Perform as Well as 7 to 10-year-olds on cause-and-effect Water Displacement TasksTropical Lizards Can Solve Novel Problems and Remember the Solutions

Continue reading

Crows can Perform as Well as 7 to 10-year-olds on cause-and-effect Water Displacement Tasks

In Aesop’s fable about the crow and the pitcher, a thirsty bird happens upon a vessel of water, but when he tries to drink from it, he finds the water level out of his reach. Not strong enough to knock over the pitcher, the bird drops pebbles into it — one at a time — until the water level rises enough for him to drink his fill.

Highlighting the value of ingenuity, the fable demonstrates that cognitive ability can often be more effective than brute force. It also characterizes crows as pretty resourceful problem solvers. New research conducted by UC Santa Barbara’s Corina Logan, with her collaborators at the University of Auckland in New Zealand, proves the birds’ intellectual prowess may be more fact than fiction. Her findings, supported by the National Geographic Society/Waitt Grants Program, appear today in the scientific journal PLOS ONE: Modifications to the Aesop’s Fable Paradigm Change New Caledonian Crow Performances.

photo of Corina Logan

Researcher Corina Logan with a great-tailed grackle and a night heron at the Santa Barbara Zoo. The zoo is one of the sites where Logan is gathering data to compare and contrast the cognitive abilities of grackles and New Caledonian crows.
Photo Credit: Sonia Fernandez

Logan is lead author of the paper, which examines causal cognition using a water displacement paradigm. “We showed that crows can discriminate between different volumes of water and that they can pass a modified test that so far only 7- to 10-year-old children have been able to complete successfully. We provide the strongest evidence so far that the birds attend to cause-and-effect relationships by choosing options that displace more water.”

Logan, a junior research fellow at UCSB’s SAGE Center for the Study of the Mind, worked with New Caledonian crows in a set of small aviaries in New Caledonia run by the University of Auckland. “We caught the crows in the wild and brought them into the aviaries, where they habituated in about five days,” she said. Keeping families together, they housed the birds in separate areas of the aviaries for three to five months before releasing them back to the wild.

Continue reading

Goats Excel at Learning and Remembering a Complex Tasks

I like research showing animals using intelligence that seems advanced, for example: Crow Using a Sequence of Three ToolsInsightful Problem Solving in an Asian ElephantBird-brains smarter than your average apeTropical Lizards Can Solve Novel Problems and Remember the SolutionsPigeon Solves Box and Banana Problem.

I also like open access science, and this has both: Goats excel at learning and remembering a highly novel cognitive task

The majority of trained goats (9/12) successfully learned the task quickly; on average, within 12 trials. After intervals of up to 10 months, they solved the task within two minutes, indicating excellent long-term memory. The goats did not learn the task faster after observing a demonstrator than if they did not have that opportunity. This indicates that they learned through individual rather than social learning.”

The individual learning abilities and long-term memory of goats highlighted in our study suggest that domestication has not affected goat physical cognition. However, these cognitive abilities contrast with the apparent lack of social learning, suggesting that relatively intelligent species do not always preferentially learn socially. We propose that goat cognition, and maybe more generally ungulate cognition, is mainly driven by the need to forage efficiently in harsh environments and feed on plants that are difficult to access and to process, more than by the computational demands of sociality. Our results could also explain why goats are so successful at colonizing new environments.

The experiment was done with domesticated goats. I also learned this from the article, which I didn’t know before:

Domestication is known to strongly affect brain size. Consistent reductions in brain size relative to body size, as well as in brain size parts, have occurred in many domestic species.

Related: Orangutan Attempts to Hunt Fish with SpearFriday Fun: Bird Using Bait to FishPhoto of Fish Using a Rock to Open a Clam

Continue reading

How Our Brains React to Sugar

The dopamine reaction to sugar leads us to seek out that good feeling. Sugars can lead us astray by encouraging us to seek more than is good for us.

A sensible explanation is that sugars provide high calories and were rare and so the more we could find the better. Evolution takes a long time to adjust though (and of course misses things that don’t affect passing on successful genes) so long (in our human timeframe, short in evolutionary timeframe) after we have far too much sugar available our brains our encouraging us to eat all we can find. This of course, at best, is a very oversimplified view.

Related: Can Just A Few Minute of Exercise a Day Prevent Diabetes?Does Diet Soda Result in Weight Gain?How Caffeine Affects Your Body

Better Health Through: Exercise, Not Smoking, Low Weight, Healthy Diet and Low Alcohol Intake

These 5 activities/state reduce the risk of chronic diseases: regular exercise, not smoking, healthy bodyweight, healthy diet and low alcohol intake. How these were defined

  • not smoking
  • body mass index (BMI): 18 to under 25
  • diet: target was to be 5 portions of fruit and/or vegetables a day, but since almost no one meet that target they reduced the acceptable rate to 3 as accepted as ‘healthy.” Also a diet with less than 30% of calories from fat was required.
  • physical activity: walking two or more miles to work each day, or cycling ten or more miles to work each day, or ‘vigorous’ exercise described as a regular habit
  • alcohol: three or fewer units per day, with abstinence not treated as a healthy behaviour.

Healthy Lifestyles Reduce the Incidence of Chronic Diseases and Dementia: Evidence from the Caerphilly Cohort Study (PLoS open science publication).

The numbers of men judged to be following a healthy lifestyle were as follows: 179 (8%) followed none of the five behaviours, 702 (31%) followed one behaviour, 814 (36%) followed two, 429 (19%) followed three, 111 (5%) followed four or five behaviours and only two (0.1%) followed all five behaviors.

Within a representative sample of middle-aged men, the following of increasing numbers of healthy behaviours was associated with increasing reductions in several important chronic diseases and mortality: an estimated 50% reduction in diabetes, 50% in vascular disease and 60% for all-cause mortality. These results therefore confirm previous studies and provide further data on the association of lifestyle with cognitive impairment and dementia, with a reduction of about 60% in cognitive impairment and about the same in dementia. These reductions, and especially those in cognitive function, are of enormous importance in an ageing population.

Healthy habits reduce dementia risk (Cardiff University press release):

The people who consistently followed four or five of these behaviors exp
experienced a 60 per cent decline in dementia and cognitive decline – with exercise being the strongest mitigating factor – as well as 70 per cent fewer instances of diabetes, heart disease and stroke, compared with people who followed none.

Principle Investigator Professor Peter Elwood from Cardiff University’s School of Medicine. “What the research shows is that following a healthy lifestyle confers surprisingly large benefits to health – healthy behaviours have a far more beneficial effect than any medical treatment or preventative procedure.

Christopher Allen, Senior Cardiac Nurse at the British Heart Foundation, which part-funded the study, said:

“The results of this study overwhelmingly support the notion that adopting a healthy lifestyle reduces your risk of cardiovascular disease and dementia.

Related: Examining the Scientific Basis Around Exercise and Diet ClaimsHealthy Diet, Healthy Living, Healthy WeightStudy Finds Obesity as Teen as Deadly as SmokingPhysical Activity for Adults: Inactivity Leads to 5.3 Million Early Deaths a YearToday, Most Deaths Caused by Lifetime of Action or Inaction

Exercise Reduces Anxiety While Also Promoting the Growth of New Neurons

Exercise reorganizes the brain to be more resilient to stress

These findings potentially resolve a discrepancy in research related to the effect of exercise on the brain — namely that exercise reduces anxiety while also promoting the growth of new neurons in the ventral hippocampus. Because these young neurons are typically more excitable than their more mature counterparts, exercise should result in more anxiety, not less. The Princeton-led researchers, however, found that exercise also strengthens the mechanisms that prevent these brain cells from firing.

From an evolutionary standpoint, the research also shows that the brain can be extremely adaptive and tailor its own processes to an organism’s lifestyle or surroundings, Gould said. A higher likelihood of anxious behavior may have an adaptive advantage for less physically fit creatures. Anxiety often manifests itself in avoidant behavior and avoiding potentially dangerous situations would increase the likelihood of survival, particularly for those less capable of responding with a “fight or flight” reaction, she said.

The anxiety-reducing effect of exercise was canceled out when the researchers blocked the GABA receptor that calms neuron activity in the ventral hippocampus.

Interesting research (with mice) that explores how exercise makes us more resilient to stress. I know for me, exercise seems to help relieve stress.

Related: Feed your Newborn NeuronsNew Neurons are Needed for New MemoriesRegular Aerobic Exercise for a Faster Brain (2007)Inactivity Leads to 5.3 Million Early Deaths a YearHow Aerobic Exercise Suppresses Appetite

Tropical Lizards Can Solve Novel Problems and Remember the Solutions

Brainy Lizards Pass Tests for Birds

[Duke biologist Manuel Leal] tested the lizards using a wooden block with two wells, one that was empty and one that held a worm but was covered by a cap. Four lizards, two male and two female, passed the test by either biting the cap or bumping it out of the way.

The lizards solved the problem in three fewer attempts than birds need to flip the correct cap and pass the test, Leal said. Birds usually get up to six chances a day, but lizards only get one chance per day because they eat less. In other words, if a lizard makes a mistake, it has to remember how to correct it until the next day

Leal’s experiment “clearly demonstrates” that when faced with a situation the lizards had never experienced, most of them were able to devise a way to solve the problem. Their ability to “unlearn” a behavior, a skill that some mammalian species have difficulty in, is the mark of a cognitively advanced animal, said Jonathan Losos, a biologist at Harvard who was not involved in the study.

To see if the lizards could reverse this association, Leal next placed the worm under the other cap. At first, all the lizards bumped or bit the formerly lucrative blue cap. But after a few mistakes, two of the lizards figured out the trick. “We named these two Plato and Socrates,” Leal said.

It is very cool to see what scientists keep learning about animals.

Related: Insightful Problem Solving in an Asian ElephantBird Using Bread as Bait to Catch FishCrows Transferring Their Understanding to Novel ProblemDolphins Using Tools to Hunt

Scientists Don’t Look Like They Do in Movies

The Myth of the Scientist: Crystal Dilworth at TEDxYouth@Caltech

Scientists don’t fit the stereotypical mold some people think they do. It doesn’t take much to replace those views. The main point, in my opinion, is to let kids know they can be a scientists even if they are not like the stereotypical examples – though it will take a lot of work.

Related: Movie Aims to Inspire College Students With Tales of Successful Minority ScientistsWomen Working in ScienceCitizen ScientistsScientists Singing About Science

Continue reading

Baboons Learn to Recognize Hundreds of Words

The (Monkey) Business Of Recognizing Words by Jon Hamilton

[Jonathan Grainger, researcher, Aix-Marseille University] says a baboon named Dan learned more than 300 words. “Dan’s our star baboon,” he says. “He’s a high-performing individual, basically. He does well in most tasks.”

But here’s the amazing thing: Dan and the other baboons also learned to tell whether a string of letters they’d never seen before was an English word. That’s something first-graders learn to do when they start reading, but scientists had assumed that children were simply sounding out the letters to decide whether they make sense.

Of course, the baboons couldn’t do this because they’re not learning to read a language they already speak. They had to rely on a part of the brain that can tell whether objects fit a known pattern.

Michael Platt, who directs the Duke Institute for Brain Sciences, says he was surprised by what the baboons were able to do.

“I was really looking for holes to poke in this study, but it was very difficult to find any because it was really beautifully done,” he says. “And I think the linchpin here was that the baboons, once they had learned the rule, could generalize to new words that they had not seen before.”

Platt says when you think about it, the finding makes sense, given what’s known about human and animal brains. “Brains are always looking for patterns,” he says. “They are always looking to make some statistical pattern analysis of the features and events that are in the environment. And this would just be one of those.”

Platt says that’s a big departure from the idea that reading is a direct extension of spoken language.

One questions I have, is why the experiment done in France tested wether the Baboons could recognize English words?

Related: Brain Reorganizes As It Learns MathBird Brain ExperimentsHow Humans Got So SmartHow Our Brain Resolves Sight

Memory is Stored by Turning on Genes in Neurons (to Alter Connection Between Neurons)

I find these kind of stories so interesting. I really have so little understanding of genes. I knew memory had something to do with altering connections between neurons. I had no idea that required turning on many genes in those neurons. Life really is amazing.

Neuroscientists identify a master controller of memory

When you experience a new event, your brain encodes a memory of it by altering the connections between neurons. This requires turning on many genes in those neurons.

Lin and her colleagues found that Npas4 turns on a series of other genes that modify the brain’s internal wiring by adjusting the strength of synapses, or connections between neurons. “This is a gene that can connect from experience to the eventual changing of the circuit,” says [Yingxi] Lin

So far, the researchers have identified only a few of the genes regulated by Npas4, but they suspect there could be hundreds more. Npas4 is a transcription factor, meaning it controls the copying of other genes into messenger RNA — the genetic material that carries protein-building instructions from the nucleus to the rest of the cell. The MIT experiments showed that Npas4 binds to the activation sites of specific genes and directs an enzyme called RNA polymerase II to start copying them.

“Npas4 is providing this instructive signal,” Ramamoorthi says. “It’s telling the polymerase to land at certain genes, and without it, the polymerase doesn’t know where to go. It’s just floating around in the nucleus.”

When the researchers knocked out the gene for Npas4, they found that mice could not remember their fearful conditioning. They also found that this effect could be produced by knocking out the gene just in the CA3 region of the hippocampus. Knocking it out in other parts of the hippocampus, however, had no effect.

One of the things I aim to do in 2012 is read a few more books on biology and genes. I find it incredible what are genes actually are doing to allow us to live our lives. And I am also very ignorant on the whole area. So hopefully I can have some fun next year learning about it.

Related: Epigenetic Effects on DNA from Living Conditions in Childhood Persist Well Into Middle AgeAntigen Shift in Influenza Viruses8 Percent of the Human Genome is Old Virus GenesBrain Reorganizes As It Learns Math