Posts about cars

Red-light Cameras Save Lives, Could Save More if Used in More Cities

Red light cameras saved 159 lives in 2004-08 in 14 of the biggest US cities, a new analysis by the Insurance Institute for Highway Safety shows. Had cameras been operating during that period in all large cities, a total of 815 deaths would have been prevented.

“The cities that have the courage to use red light cameras despite the political backlash are saving lives,” says Institute president Adrian Lund. The researchers found that in the 14 cities that had cameras during 2004-08, the combined per capita rate of fatal red light running crashes fell 35 percent, compared with 1992-96. The rate also fell in the 48 cities without camera programs in either period, but only by 14 percent.

The rate of all fatal crashes at intersections with signals — not just red light running crashes — fell 14 percent in the camera cities and crept up 2 percent in the noncamera cities. In the camera cities, there were 17 percent fewer fatal crashes per capita at intersections with signals in 2004-08 than would have been expected. That translates into 159 people who are alive because of the automated enforcement programs.

This result shows that red light cameras reduce not only fatal red light running crashes, but other types of fatal intersection crashes as well. One possible reason for this is that red light running fatalities are undercounted due to a lack of witnesses to explain what happened in a crash. Drivers also may be more cautious in general when they know there are cameras around.

Based on these calculations, if red light cameras had been in place for all 5 years in all 99 US cities with populations over 200,000, a total of 815 deaths could have been avoided.

“Somehow, the people who get tickets because they have broken the law have been cast as the victims,” Lund says. “We rarely hear about the real victims — the people who are killed or injured by these lawbreakers.” Red light running killed 676 people and injured an estimated 113,000 in 2009. Nearly two-thirds of the deaths were people other than the red light running drivers — occupants of other vehicles, passengers in the red light runners’ vehicles, bicyclists, or pedestrians.

Previous research has established that red light cameras deter would-be violators and reduce crashes at intersections with signals. Institute studies of camera programs have found that red light violations fell at intersections where cameras were installed and that this effect also spilled over to intersections without cameras. An Institute study in Oxnard, Calif., found that injury crashes at intersections with traffic signals fell 29 percent citywide after automated enforcement began.

The new study adds to this by showing that cameras reduce not only violations and crashes throughout entire communities but deaths, too.

Red-light cameras save lives, study says

The 2.2 million intersection crashes recorded in 2009 made up about 41 percent of all accidents. They resulted in 81,112 serious injuries and 7,358 deaths. Police established red-light running as the cause of 676 deaths and 113,000 injuries. The vast majority of the people who died – 64 percent – were not driving the vehicle that ran the light. They were passengers, other drivers, pedestrians and cyclists.

Related: D.C. Red-Light Cameras Fail to Curb AccidentsDo Red Light Cameras Make for Safer Intersections?Traffic Congestion and a Non-SolutionEngineering a Better Blood Alcohol Sensor

Google’s Self Driving Car

Google thinks big. Google thinks like engineers. Google is willing to spend money taking on problems that other companies don’t. They have been developing a car that can drive itself. They see a huge amount of waste (drivers lives and drivers time) and seek a solution.

Larry and Sergey founded Google because they wanted to help solve really big problems using technology. And one of the big problems we’re working on today is car safety and efficiency. Our goal is to help prevent traffic accidents, free up people’s time and reduce carbon emissions by fundamentally changing car use.

So we have developed technology for cars that can drive themselves. Our automated cars, manned by trained operators, just drove from our Mountain View campus to our Santa Monica office and on to Hollywood Boulevard. They’ve driven down Lombard Street, crossed the Golden Gate bridge, navigated the Pacific Coast Highway, and even made it all the way around Lake Tahoe. All in all, our self-driving cars have logged over 140,000 miles. We think this is a first in robotics research.

Our automated cars use video cameras, radar sensors and a laser range finder to “see” other traffic, as well as detailed maps (which we collect using manually driven vehicles) to navigate the road ahead. This is all made possible by Google’s data centers, which can process the enormous amounts of information gathered by our cars when mapping their terrain.

To develop this technology, we gathered some of the very best engineers from the DARPA Challenges, a series of autonomous vehicle races organized by the U.S. Government. Chris Urmson was the technical team leader of the CMU team that won the 2007 Urban Challenge. Mike Montemerlo was the software lead for the Stanford team that won the 2005 Grand Challenge. Also on the team is Anthony Levandowski, who built the world’s first autonomous motorcycle that participated in a DARPA Grand Challenge, and who also built a modified Prius that delivered pizza without a person inside.

Related: Larry Page and Sergey Brin WebcastEnergy Secretary Steve Chu and Google CEO Eric Schmidt Speak On Funding Science ResearchGoogle’s Ten Golden RulesCMU Wins $2 million in DARPA Auto Race

How the Practice and Instruction of Engineering Must Change

Chief Scientist for the Rocky Mountain Institute and MacArthur Fellow, Amory Lovins, describes how small gains in efficiency at the consumption point can trigger gains that are magnitudes larger at higher levels and discusses how engineering must be practiced and taught fundamentally different.

Related: MIT Hosts Student Vehicle Design Summit59 MPG Toyota iQ Diesel Available in EuropeWebcast: Engineering Education in the 21st Century

Car Style Mass Transit Mag Lev System

Skytran is a very cool sounding transportation option. It promises, individual transportation modules traveling at 100 miles per hour within the city nonstop to many more points than light rail can service. The current non-solutions we have been attempting for decades of building more and more roads is not working.

The costs is estimated at much cheaper than other alternatives. It would be great if something like this could actually make it (it is much easier to dream about possibilities than to bring them into the world).

From the SkyTran web site:

It works like a taxi that picks you up and drives you to your destination. You travel only with people you choose to, in personal-sized vehicles. The electric vehicles are automatically driven at a constant speed on the main guideway. Like on a freeway, you travel non-stop until taking an exit-ramp at your destination. Also like a freeway, instead of intersections PRT has over-passes so you truly never have to stop… vehicles are lined up waiting for you at boarding stations, and after you get out, they either line up to wait for another rider, or go park themselves and wait for peak periods when they’ll be needed.

At 60 mph the electricity for SkyTran would cost less than 1 cent per mile (at current electricity costs of 11 cents per kWhr). By comparison, buying gas for a 30-MPG car at $2/gallon costs more than 7 times as much.

The site estimates the cost at$10 million per mile for one-way track and $15 million per mile for two-way track. Fundamentally, SkyTran track can be cheaply built because all of the components are very light-weight. Weight is why roads and trains cost so much… In comparison, SkyTran’s guideway only needs to support one 1000 pound (loaded) vehicle at a time… See the detailed cost evaluation page.
Continue reading

How to Develop Products like Toyota

How to Develop Products like Toyota

Sobek also says Toyota tends to stay as flexible as possible until relatively late in the development stage. He cites as an example Toyota’s practice of leaving manufacturing tolerances to be set by die makers rather than by design engineers creating the prints. Die makers make die dimensions as close as practical to those in the CAD database, but have the flexibility to modify them so body parts fit together well. Manufacturing engineers then set tolerances around manufacturing capabilities.

“Test first, then design. First run simulations and understand where the boundaries of solutions lie. Once you understand the alternate spaces between competing choices, you narrow the options in what are called integrating events.”

Integrating events are an opportunity to eliminate weak opportunities. It is only after these events are complete that detailed design commences. “The point is that you don’t get to detailed design until everything works,” says Kennedy. “That is the reason Toyota focuses so intently up front on understanding trade-offs.”

This is very similar to agile software development practices. Though due to different processes, software versus car manufacture the two process are not identical.

Though Toyota is adept at developing products, it may be a mistake to adopt its practices wholesale, no matter how good they are. “Much of the lean community tries to crow-bar Toyota’s approach into their own very different business model,”

This is always true. Copying what others do does not work. You can learn from others by understanding the benefits of their process and then adapting the ideas to your organization.

Toyota has several tools that help its engineers organize the tasks at hand. One of the most well known is called the A3 document, named for the size of the paper its information is written on. An A3 holds a distillation of project goals and customer wants. During development, it can serve as a crib sheet for engineers as they set priorities and make trade-offs. “A3s enforce the plan-do-check- act methods of quality,” explains Kennedy. “The A3 becomes the basis for Toyota’s entire review process.”

On my management improvement blog I discuss the Toyota Production System often, you can follow those posts if you are interested.

Related: Toyota Engineering Development ProcessToyota Winglet, Personal Transportation12 stocks for 10 yearsToyota Robots

Engineers Rule at Honda

Engineers Rule, 2006

Of all the bizarre subsidiaries that big companies can find themselves with, Harmony Agricultural Products, founded and owned by Honda Motor, is one of the strangest. This small company near Marysville, Ohio produces soybeans for tofu. Soybeans? Honda couldn’t brook the sight of the shipping containers that brought parts from Japan to its nearby auto factories returning empty. So Harmony now ships 33,000 pounds of soybeans to Japan.

Longtime auto analyst John Casesa, who now runs a consulting company, says, “There’s not a company on earth that better understands the culture of engineering.” The strategy has worked thus far. Honda has never had an unprofitable year. It has never had to lay off employees.

I checked and Honda was also profitable in 2007 and 2008 fiscal year (ending in September).

Related: Honda EngineeringAsimo Robot: Running and Climbing StairsThe Google Way: Give Engineers RoomGoogle’s Ten Golden Rules

New Supercomputer for Science Research

photo of Jaguar Supercomputer

“Jaguar is one of science’s newest and most formidable tools for advancement in science and engineering,” said Dr. Raymond L. Orbach, DOE.s Under Secretary for Science. The new capability will be added to resources available to science and engineering researchers in the USA.

80 percent of the Leadership Computing Facility resources are allocated through the United States Department of Energy’s Innovative and Novel Computational Impact on Theory and Experiment (INCITE) program, a competitively selected, peer reviewed process open to researchers from universities, industry, government and non-profit organizations. Scientists and engineers at DOE’s Oak Ridge National Laboratory are finding an increasing variety of uses for the Cray XT system. A recent report identified 10 breakthroughs in U.S. computational science during the past year. Six of the breakthroughs involved research conducted with the Jaguar supercomputer, including a first-of-its-kind simulation of combustion processes that will be used to design more efficient automobile engines. Read the computational science report. Read full press release.

ORNL’s Jaguar fastest computer for science research

Jaguar will be used for studies of global climate change, as well as development of alternative energy sources and other types of scientific problem-solving that previously could not be attempted.

Zacharia said ORNL’s Jaguar was upgraded by adding 200 Cray XT5 cabinets – loaded with AMD quadcore processors and Cray SeaStar interconnects – to the computer’s existing 84 Cray XT4 cabinets. The combined machine resulted in the new standard for computational science.

The peak operating speed is apparently just below that of Los Alamos National Laboratory’s IBM Roadrunner system, which is designed for 1.7 petaflops. But the Jaguar reportedly has triple the memory of Roadrunner and much broader research potential.

Because the Jaguar has come online sooner than expected, Zacharia said an alert was sent to top U.S. scientists inviting them to apply for early access to the Oak Ridge computer. Their scientific proposals will be reviewed on an accelerated timetable, he said.

The peak capability of 1.64 petaflops is attributed to 1.384 petaflops from the new Cray XT5, combined with 0.266 petaflops from the existing Cray XT4 system, Zacharia said.

How fast is a quadrillion calculations per second? “One way to understand the speed is by analogy,” Zacharia said recently. “It would take the entire population of the Earth (more than 6 billion people), each of us working a handheld calculator at the rate of one second per calculation, more than 460 years to do what Jaguar at a quadrillion can do in one day.”

Related: National Center for Computational Sciences at ORNL site on Jaguar (photo from here) – Open Science Computer GridDonald Knuth, Computer ScientistSaving FermilabNew Approach Builds Better Proteins Inside a ComputerDoes the Data Deluge Make the Scientific Method Obsolete?

Toyota Operates High School in India

Toyota Eyes India Market, Builds School to Get Edge

Built on a rugged hillside in southern India that is populated by wildcats [see below] and monkeys, Toyota’s sprawling technical training school, which opened last year, gives about 180 junior-high-school graduates an education in everything from dismantling transmissions to Japanese group exercises.

Toyota wants to turn students like Satish Lakshman, the son of a poor farmer, into a skilled employee who can boost the auto maker’s fortunes in this key emerging market. “We are learning discipline, confidence and continuous improvement,” says Mr. Lakshman, an energetic 18-year-old.

At the foundation of its growth plan is the Toyota Technical Training Institute. India’s auto market is growing at such a fast pace that skilled workers are in short supply. Toyota says the school will enable the company to develop the productive, skilled employees it needs.

Toyota has taken a similar approach in China, where it has helped the government run a technical training center since 1990. In India, rival auto makers are following Toyota’s lead. In September, Honda announced plans to open a technical college. Other car makers have formed partnerships with India’s technical institutes to improve training.

The school teaches students practical skills such as welding, auto assembly and maintenance. It also gives the young recruits a smattering of classes in such subjects as math, English and Japanese as well as lessons in the company’s cherished principles of consensus building, continuous improvement and eliminating waste.

Toyota is willing to invest in the long term. A much better sign than a company that is willing to pay their executives salaries that top the wealth of kings. Toyota also believes in education: Idle Workers Busy at Toyota.

Related: Toyota Building Second Plant in IndiaEngineering Education in IndiaManufacturing Takes off in IndiaHigh School Students in USA, China and IndiaLargest Manufacturing Countries

Continue reading

Dean Kamen: Stirling Engines

Dean Kamen: part man, part machine

Conceived in Scotland almost 200 years ago, the Stirling [engine] is a marvel of thermo-dynamics that could help to replace the internal combustion engine – in theory it can turn any source of heat into electricity, in silence and with 100 per cent efficiency. But corporations including Phillips, Ford and Nasa have devoted decades of research, and millions of dollars, to developing the engine, and all retired defeated, having failed to find a way of turning the theoretical principles of the engine into a workable everyday application. Kamen, nevertheless, has spent the past 10 years and, he estimates, up to $40 million working on the problem.

Now he and his engineers have built and tested a range of Stirling engines suitable for mass production that can be run on anything from jet fuel to cow dung. The one in the boot of the small blue car is designed to extend its range and constantly recharge its batteries to make a new kind of hybrid vehicle: one fit for the roads of the 21st century. A Stirling-electric hybrid, Kamen tells me, can travel farther and more efficiently than conventional electric cars; it generates enough power to run energy-hungry devices such as heaters and defrosters that are essential for drivers who, unlike those he calls the ‘tofu heads’ of California, must cope with a cold climate; and even using petrol, the engine runs far cleaner than petrol-electric hybrids such as Toyota’s Prius.

However, Kamen confesses, his new creation isn’t quite finished yet: ‘The Stirling engine’s not hooked up. Which really pisses me off.’

But it could work?

‘It will work,’ he says. ‘Trust me.’

Related: R&D Magazine’s 2006 Innovator of the YearRobotic Prosthetic Arms for People

59 MPG Toyota iQ Diesel Available in Europe

image of seating in the toyota iQ

59 MPG Toyota iQ On Sale In Europe, US Plans Unclear

With lower carbon dioxide emissions than the Prius — around 159 grams of CO2 emitted per mile by the 1.0 liter gas engine and 166 g/mile for the diesel version — not only does the iQ deliver on fuel economy, but its straight-up conventional engine is a pollution winner too.

At just about 9.8 feet long, 5.5 feet wide and 4.9 feet tall, Toyota certainly has pulled of a near engineering miracle with the amount of stuff they’ve crammed into this tiny vehicle. Toyota claims the iQ can fit 3 adults and 1 child “comfortably.”

Toyota expects to sell about 80,000 of them a year in Europe.

I own some Toyota stock (and bought a bit more recently) based on their excellent management and production system and the results they have achieved (so I pay attention to what they are doing – plus I own them because they do things I see as wise so it is a self reinforcing dynamic). Business week recently wrote about Ford’s 65 mpg Diesel Car the U.S. Can’t Have.

I owned Ford stock back when they were adopting Deming based management principles but when they dropped those to pursue short sighted goals and poor management practices I sold and bought Toyota (turned out to be a very wise decision – my mistake was holding Ford too long hoping they would realize their mistake).

Related: Toyota Engineering Development ProcessToyota Cultivating Engineering TalentToyota Winglet, Personal TransportationToyota iUnitToyota iQ media kit (lots of details)

Compressed Air Powered Car Webcast

I posted on a car powered using compressed air previously. Here is a webcast on that car:

More webcasts on the car: Catvolution’s Air Car ride + interview Cyril NegreCATvolution YouTube webcasts

Related: Aptera Prototype (over 230 MPG)Car ElevatorElectric Cars