Category Archives: quote

Controlled Experiments for Software Solutions

by Justin Hunter

Jeff Fry linked to a great webcast in Controlled Experiments To Test For Bugs In Our Mental Models.

I firmly believe that applied statistics-based experiments are under-appreciated by businesses (and, for that matter, business schools). Few people who understand them are as articulate and concise as Kohavi. Admittedly, I could be accused of being biased as: (a) I am the son of a prominent applied statistician and (b) I am the founder of a software testing tools company that uses applied statistics-based methods and algorithms to make our tool work.

Summary of the webcast, on Practical Guide to Controlled Experiments on the Web: Listen to Your Customers not to the HiPPO – a presentation by Ron Kohavi with Microsoft Research.

1:00 Amazon: in 2000, Greg Linden wanted to add recommendations in shopping cards during the check out process. The “HiPPO” (meaning the Highest Paid Person’s Opinion) was against it on the grounds that it would be a bad idea; recommendations would confuse and/or distract people. Amazon, a company with a good culture of experimentation, decided to run a small experiment anyway, “just to get the data” – It was wildly successful and is in widespread use today at Amazon and other firms.

3:00 Dr. Footcare example: Including a coupon code above the total price to be paid had a dramatic impact on abandonment rates.

4:00 “Was this answer useful?” Dramatic differences occur when Y/N is replaced with 5 Stars and whether an empty text box is initially shown with either (or whether it is triggered only after a user clicks to give their initial response)

6:00 Sewing machines: experimenting with a sales promotion strategy led to extremely counter-intuitive pricing choice

7:00 “We are really, really bad at understanding what is going to work with customers…”
Continue reading

Another Survey Shows Engineering Degree Results in the Highest Pay

The PayScale salary survey looked at both starting and mid career salary. Engineering topped both measures. Of the top 10 mid career salaries, 7 were engineering degrees – including the top 4. The survey is based upon data for full-time employees in the United States who possess a Bachelor’s degree and no higher degrees and have majored in the subjects listed above.

The top 11 paying degrees are:

Highest Paid Undergrad College Degrees
Degree Starting Median Salary Mid-Career Median Salary
Aerospace Engineering $59,600 $109,000
Chemical Engineering $65,700 $107,000
Computer Engineering $61,700 $105,000
Electrical Engineering $60,200 $102,000
Economics $50,200 $101,000
Physics $51,100 $98,800
Mechanical Engineering $58,900 $98,300
Computer Science $56,400 $97,400
Industrial Engineering $57,100 $95,000
Environmental Engineering $53,400 $94,500
Statistics $48,600 $94,500

Related: Engineering Graduates Paid Well Again in 2008High Pay for Engineering Graduates in 2007Engineering Graduates Get Top Salary Offers in 2006posts on science and engineering careersposts on engineering education

Global Installed Wind Power Now Over 1.5% of Global Electricity Demand

graph of global installed wind power capacityChart showing global installed wind energy capacity by Curious Cat Science and Engineering Blog, Creative Commons Attribution. Data from World Wind Energy Association, for installed Mega Watts of global wind power capacity.

_________________________

Globally 27,339 MW of capacity were added in 2008, bringing the total to 121,188 MW, a 29% increase. The graph shows the top 10 producers (with the exceptions of Denmark and Portugal) and includes Japan (which is 13th).

In 2007, Europe had for 61% of installed capacity and the USA 18%. At the end of 2008 Europe had 55% of installed capacity, North America 23%, Asia 20%, Australia 1.5%, Latin America .6% and Africa .5%. Country shares of global capacity at the end of 2008: USA 21%, Germany 20%, Spain 14%, China 10%, India 8% (those 5 countries account for 73% of global capacity).

USA capacity grew 50% in 2008, moving it into the global lead for the first time in a decade. China grew 107%, the 3rd year in a row it more than doubled capacity.

Related: Wind Power Provided Over 1% of Global Electricity in 2007USA Wind Power Installed Capacity 1981 to 2005Wind Power has the Potential to Produce 20% of Electricity by 2030Top 12 Manufacturing Countries in 2007

Merck and Elsevier Publish Phony Peer-Review Journal

Elsevier is one of those publishers fighting open science. They try to claim that the government publishing government funded research in an open way will tarnish science. The argument makes no sense to me. Here is another crazy action on their part: they published a “journal” funded by Merck to promote Merck products. Merck Makes Phony Peer-Review Journal:

Merck cooked up a phony, but real sounding, peer reviewed journal and published favorably looking data for its products in them. Merck paid Elsevier to publish such a tome, which neither appears in MEDLINE or has a website, according to The Scientist.

What’s sad is that I’m sure many a primary care physician was given literature from Merck that said, “As published in Australasian Journal of Bone and Joint Medicine, Fosamax outperforms all other medications….” Said doctor, or even the average researcher wouldn’t know that the journal is bogus. In fact, knowing that the journal is published by Elsevier gives it credibility!

As I have said the journals fighting open science should have their credibility questioned. They are putting their outdated business model above science. We should not see organizations that are focused on closing science research through deceptive publicity efforts and lobbying efforts as credible.

Related: From Ghost Writing to Ghost Management in Medical JournalsMerck Faked a Research JournalMedical Study Integrity (or Lack Thereof)The Future of Scholarly PublicationFresh questions raised about prominent cardiologist’s role in “ghostwritten” 2001 meta-analysis of Vioxx trialsScience Commons: Making Scientific Research Re-usefulPublishers Continue to Fight Open Access to ScienceMisleading or Deceptive ConductPeter Suber Response to Rep. Conyers

Evolutionary Robotics

Evolutionary Robotics, chapter of Handbook of Robotics, is interesting and includes a good explanation of the difference between evolution and learning:

Evolution and learning (or phylogenetic and ontogenetic
adaptation) are two forms of biological adaptation that differ in space and time. Evolution is a process of selective reproduction and substitution based on the existence of a population of individuals displaying variability at the genetic level. Learning, instead, is a set of modifications taking place within each single individual during its own life time.

Evolution and learning operate on different time scales. Evolution is a form of adaptation capable of capturing relatively slow environmental changes that

might encompass several generations (e.g., the perceptual characteristics of food sources for a given species). Learning, instead, allows an individual to adapt to environmental modifications that are unpredictable at the generational level. Learning might include a variety of mechanisms that produce adaptive changes in an individual during its lifetime, such as physical development, neural maturation, variation of the connectivity between neurons, and synaptic plasticity. Finally, whereas evolution operates on the genotype, learning affects only the phenotype and phenotypic modifications cannot directly modify the genotype.

Recent research showed that teams of evolved robots can: (a) develop robust and effective behavior, (b) display an ability to differentiate their behavior so
to better cooperate; (c) develop communication capabilities and a shared communication system.

Related: What are Genetic Algorithms?Evolutionary DesignLaboratory of Intelligent SystemsRobot with Biological Brainposts on robotics

The Software Developer Labor Market

With the economy today you don’t hear much of a desperate need for programmers. But Dr. Norman Matloff, Department of Computer Science, University of California at Davis, testimony to Congress (Presented April 21, 1998; updated December 9, 2002) on Debunking the Myth of a Desperate Software Labor Shortage is full of lots of interesting information (for current and past job markets).

The industry says that it will need H-1B visas temporarily, until more programmers can be trained. Is this true?

No, it’s false and dishonest… The industry has been using this “temporary need” stall tactic for years, ever since the H-1B law was enacted in 1990. In the early- and mid-1990s, for example, the industry kept saying that H-1Bs wouldn’t be needed after the laid-off defense programmers and engineers were retrained, but never carried out its promise. It hired those laid off in low-level jobs such as technician (which is all the retraining programs prepared them for), and hired H-1Bs for the programming and engineering work.

Unlike Dr. Matloff, and many readers of this blog, I am actually not a big opponent of H-1B visas. I believe we benefit more by allowing tech savy workers to work in the USA than we lose. I understand people fear jobs are being taken away, but I don’t believe it. I believe one of the reasons we maintain such a strong programming position is due to encouraging people to come to the USA to program.

I also do believe, there are abuses, under the current law, of companies playing games to say no-one can be found in the USA with the proper skills. And I believe those apposed to H-1B visas make reasonable arguments and this testimony is a good presentation of those arguments.

This obsession with specific skills is unwarranted. What counts is general programming talent – hiring smart people – not experience with specific software technologies.

Very true.

What developers should do.

Suppose you are currently using programming language X, but you see that X is beginning to go out of fashion, and a new language (or OS or platform, etc.) Y is just beginning to come on the scene. The term “just beginning” is crucial here; it means that Y is so new that there almost no one has work experience in it yet. At that point you should ask your current employer to assign you to a project which uses Y, and let you learn Y on the job. If your employer is not willing to do this, or does not have a project using Y, then find another employer who uses both X and Y, and thus who will be willing to hire you on the basis of your experience with X alone, since very few people have experience with Y yet.

Good advice.

Related: IT Talent Shortage, or Management Failure?Preparing Computer Science Students for JobsEngineering Graduates Again in Great Shape (May 2008)What Graduates Should Know About an IT Careerposts related to computer programming
Continue reading

Build Your Own Tabletop Interactive Multi-touch Computer

This is a fantastic Do-It_Yourself (DIY) engineering story. Very interesting, definitely go read the whole article: Build Your Own Multitouch Surface Computer

First, some acknowledgments are in order. Virtually all the techniques used to create this table were discovered at the Natural User Interface Group website, which serves as a sort of repository for information in the multitouch hobbyist community.

In order for our setup to work, we needed a camera that senses infrared light, but not visible light. It sounds expensive, but you’d be surprised. In this section, we’ll show you how we created an IR camera with excellent resolution and frame-rate for only $35—the price of one PlayStation 3 Eye camera. “But that’s not an IR camera,” you say? We’ll show you how to fix that.

As it turns out, most cameras are able to sense infrared light. If you want to see first-hand proof that this is the case, try this simple experiment: First, find a cheap digital camera. Most cell phone cameras are perfect for this. Next, point it at the front of your TV’s remote control. Then, while watching the camera’s display, press the buttons on the remote. You’ll see a bluish-white light that is invisible to the naked eye. That’s the infrared light used by the remote to control the TV.

Like the computer, the projector we used for the build was something we scavenged up. The major concern for a projector to use in this kind of system is throw distance—the ratio between projection distance and image size. Short-throw projectors, which are sold by all the major projector brands, work the best for this kind of project, because they can be set up at the bottom of the cabinet and aimed directly at the surface. Unfortunately, they also tend to be more expensive.

Ever thrifty, we went with a projector we could use for free: an older home-theater projector borrowed from a friend. Because of the longer throw distance on this model, we had to mount the projector near the top of the cabinet, facing down, and use a mirror to reflect the image up onto the screen. For this we ordered a front-side mirror (a mirror with the reflective surface on the front of the glass, rather than behind it) to eliminate any potential “ghosting” problems, caused by dual reflections from the front and back of the glass in an ordinary mirror.

Related: Home Engineering: Gaping Hole CostumeVery Cool Wearable Computing Gadget from MIT‘DIY’ kidney machine saves girlHolographic Television on the WayAutomatic Cat FeederVideo Goggles

Personal Robots Being Developed in Japan

Robots Lend a Hand in Japan by Tony McNicol

The most numerous, and certainly the most high-profile, service robots in Japan are for entertainment. Ever since 2000 when Honda amazed the world with its walking humanoid Asimo, other Japanese companies have been fast on their heels. Notable examples include Mitsubishi’s lemon yellow home helper Wakamaru, Toyota’s trumpet-playing humanoid, and Murata Manufacturing’s bicycle-riding robot. Although such impressive PR robots are too expensive to sell, Japan also has popular home entertainment robots. The best known to date is Sony’s robot pooch Aibo, which was produced between 1999 and 2006.

Another potential role for service robots is dealing with Japan’s imminent demographic crisis. A low birthrate and unrivalled longevity mean the number of elderly Japanese will increase dramatically over the coming decades. In the absence of mass immigration (which Japan has been keen to avoid) a severe shortage of caregivers seems inevitable. Some people believe robots are the answer. Takanori Shibata, a senior research scientist at the National Institute of Advanced Industrial Science and Technology, says that robot caregivers can be divided into physical service and mental service robots. The former are designed to help with tasks such as washing or carrying elderly people, although given the limitations of current technology, not to mention safety concerns, they are still quite a long way from commercialization.

Mental service robots on the other hand are already here. One of the best known is Paro, an interactive robot seal designed by Shibata himself. The sophisticated robot can remember its name and change its behavior depending on how it is treated. It has been extensively tested in homes for elderly people and in hospitals. In 2002 the Guinness Book of Records named Paro as “the world’s most therapeutic robot.” The robot reminds patients of the pets or children they once cared for, says Shibata. “Paro is a kind of trigger to provoke something in the mind of the owner,” he suggests. About 1,000 of the robots, which cost about 3,000 dollars, have been produced since 2004. Overseas sales will begin shortly.

The effective use of personal robots finally seems to be fairly close at hand. Undoubtedly the initial attempts will seem limited. See Clayton Christsen’s ideas on disruptive innovation for an understanding of how I think the adoption will play out. Robots will be poor substitutes for other alternatives but as we experiment with how to make them effective we will figure out niches for which they work well. It is hard to predict what will happen but my feeling is we may finally be a the point where real uses of personal robots stat to take hold and then the growth may surprise us.

Related: Toyota Winglet – Personal TransportationA Robot to Clean Your RoomRobot Finds Lost Shoppers and Provides DirectionsThe Robotic DogToyota Partner RobotsRobotic Prosthetic Arms for People

Appropriate Technology: Self Adjusting Glasses

Self Adjusting Glasses for 1 billion of the world’s poorest see better

What if it were possible, he thought, to make a pair of glasses which, instead of requiring an optician, could be “tuned” by the wearer to correct his or her own vision? Might it be possible to bring affordable spectacles to millions who would never otherwise have them?

More than two decades after posing that question, Josh Silver [a physics professor at Oxford] now feels he has the answer. The British inventor has embarked on a quest that is breathtakingly ambitious, but which he insists is achievable – to offer glasses to a billion of the world’s poorest people by 2020.

Some 30,000 pairs of his spectacles have already been distributed in 15 countries, but to Silver that is very small beer. Within the next year the now-retired professor and his team plan to launch a trial in India which will, they hope, distribute 1 million pairs of glasses. The target, within a few years, is 100 million pairs annually.

Silver has devised a pair of glasses which rely on the principle that the fatter a lens the more powerful it becomes. Inside the device’s tough plastic lenses are two clear circular sacs filled with fluid, each of which is connected to a small syringe attached to either arm of the spectacles.

The wearer adjusts a dial on the syringe to add or reduce amount of fluid in the membrane, thus changing the power of the lens. When the wearer is happy with the strength of each lens the membrane is sealed by twisting a small screw, and the syringes removed. The principle is so simple, the team has discovered, that with very little guidance people are perfectly capable of creating glasses to their own prescription.

Oxford University, at his instigation, has agreed to host a Centre for Vision in the Developing World, which is about to begin working on a World Bank-funded project with scientists from the US, China, Hong Kong and South Africa. “Things are never simple. But I will solve this problem if I can. And I won’t really let people stand in my way.”

Cool. A couple points I would like to make:

1) this professor is making a much bigger difference in the “real world” than most people ever will. The idea that professors are all lost in insignificant “ivory towers” is a very inaccurate view of what really happens.
2) Spending money on this kind of thing seems much more important for the human race than spending trillions to bail out poor moves by bankers, financiers… It sure seems odd that we can’t find a few billion to help out people across the globe that are without basic necessities yet we can find trillions to bail out the actions of few thousand bad actors.

Related: Adaptive EyecareBringing Eye Care to Thousands in IndiaRiver Blindness Worm Develops Resistance to DrugsStrawjet: Invention of the Year (2006)Fixing the World on $2 a DayAppropriate Technology

Compounding is the Most Powerful Force in the Universe

A talking head with some valuable info. I remember my father (a statistics professor) getting me to understand this as a small child (about 6 years old). The concept of growth and mathematical compounding is an important idea to understand as you think and learn about the world. It also is helpful so you understand that statistics don’t lie but ignorant people can draw false conclusions from limited data.

It is unclear if Einstein really said this but he is often quoted as saying “compounding is the most powerful force in the universe.” Whether he did or not, understanding this simple concept is a critical component of numeracy (literacy with numbers). Also quoted at times as: “Compound interest is the eighth wonder of the world.” My guess is that people just find the concept of compounding amazing and then attribute quotes about it to Einstein.

I strongly encourage you to watch at least the first 2 segments (a total of 15 minutes). And then take some time and think. Take some time to think about compounding in ways to help you internalize the concepts. You can also read his book: The Essential Exponential For the Future of Our Planet by Albert Bartlett.

Related: Playing Dice and Children’s NumeracySaving for Retirement (compound interest)Bigger Impact: 15 to 18 mpg or 50 to 100 mpg?Sexy MathThe Economic Benefits of Math