Evolutionary Robotics

Posted on April 26, 2009  Comments (0)

Evolutionary Robotics, chapter of Handbook of Robotics, is interesting and includes a good explanation of the difference between evolution and learning:

Evolution and learning (or phylogenetic and ontogenetic
adaptation) are two forms of biological adaptation that differ in space and time. Evolution is a process of selective reproduction and substitution based on the existence of a population of individuals displaying variability at the genetic level. Learning, instead, is a set of modifications taking place within each single individual during its own life time.

Evolution and learning operate on different time scales. Evolution is a form of adaptation capable of capturing relatively slow environmental changes that

might encompass several generations (e.g., the perceptual characteristics of food sources for a given species). Learning, instead, allows an individual to adapt to environmental modifications that are unpredictable at the generational level. Learning might include a variety of mechanisms that produce adaptive changes in an individual during its lifetime, such as physical development, neural maturation, variation of the connectivity between neurons, and synaptic plasticity. Finally, whereas evolution operates on the genotype, learning affects only the phenotype and phenotypic modifications cannot directly modify the genotype.

Recent research showed that teams of evolved robots can: (a) develop robust and effective behavior, (b) display an ability to differentiate their behavior so
to better cooperate; (c) develop communication capabilities and a shared communication system.

Related: What are Genetic Algorithms?Evolutionary DesignLaboratory of Intelligent SystemsRobot with Biological Brainposts on robotics

Leave a Reply