Posts about scientific literacy

Drug Company Funding Taints Published Medical Research

Science provide the opportunity for us to achieve great benefits for society. However, especially in medical research money can make what are already very difficult judgments even less reliable. Add that to a very poor understanding of science in those we elect and you have a dangerous combination. That combination is one of the largest risks we face and need to manage better. I wish we would elect people with a less pitiful appreciation for science but that doesn’t seem likely. That makes doing a better job of managing the conflicts of interest money puts into our current medical research a top priority.

How Drug Company Money Is Undermining Science by Charles Seife

In the past few years the pharmaceutical industry has come up with many ways to funnel large sums of money—enough sometimes to put a child through college—into the pockets of independent medical researchers who are doing work that bears, directly or indirectly, on the drugs these firms are making and marketing. The problem is not just with the drug companies and the researchers but with the whole system—the granting institutions, the research labs, the journals, the professional societies, and so forth. No one is providing the checks and balances necessary to avoid conflicts.

Peer-reviewed journals are littered with studies showing how drug industry money is subtly undermining scientific objectivity. A 2009 study in Cancer showed that participants somehow survived longer when a study’s authors had conflicts of interest than when the authors were clean. A 1998 study in the New England Journal of Medicine found a “strong association” between researchers’ conclusions about the safety of calcium channel blockers, a class of drugs used to reduce blood pressure, and their financial relationships with the firms producing the drugs.

Most of those in the system have an interest in minimizing an effort to clean this up. It is just more work they don’t want to do. Or it goes directly against their interest (drug companies that want to achieve favorable opinions by buying influence). The main political message in the USA for a couple decades has been to reduce regulation. Allowing research that is tainted because you find regulation politically undesirable is a bad idea. People that understand science and how complex medical research is appreciate this.

Sadly when we elect people that by and large are scientifically illiterate they don’t understand the risks of the dangerous practices they allow. Even if they were scientifically illiterate but understood their ignorance they could do a decent job by getting scientific consultation from experts but they don’t (to an extent they listen to the scientists that those that give them lots of money tell them to which does help make sure those giving the politicians cash have their interests served but it is not a good way to create policy with the necessary scientific thinking needed today).

Related: Problems with the Existing Funding System for Medical ResearchMedical Study Integrity (or Lack Thereof)Merck and Elsevier Publish Phony Peer-Review JournalAnti-Science PoliticsStand with Science, Late is Better than Never

Did a massive comet explode over Canada 12,900 years ago and start an ice age?

I think it is important to increase scientific literacy. One thing that is greatly misunderstood is the process for new scientific explanations being accepted by the scientific community. It is often quite a drawn out process over years (and for the explanation provided in this paper the debate is certainly still ongoing). And for issues that really shake up past explanations it can take decades and be quite contentious. I think posts tagged with “scientific inquiry” are a very interesting collection to explore.

It is important to understand the difficulty in providing evidence that satisfies the overwhelming majority of the scientific experts in any area. And it is important to understand the claims in one (or numerous papers) are not the accepted proven wisdom of the scientific community. Thankfully the process is rigorous. While mistakes can still be made, the evidence needed to substantiate a scientific hypothesis is significant. Their is still plenty of room for position to color accepted scientific wisdom. A respected professor is often able to make a claim that is more readily accepted and even more-so for to insist the new claims do not provide enough evidence in support of them to accept the new claims and have there position accepted (even when it really shouldn’t be looking just at the facts).

Topper site in middle of comet controversy

Firestone found concentrations of spherules (micro-sized balls) of metals and nano-sized diamonds in a layer of sediment dating 12,900 years ago at 10 of 12 archaeological sites that his team examined. The mix of particles is thought to be the result of an extraterrestrial object, such as a comet or meteorite, exploding in the earth’s atmosphere. Among the sites examined was USC’s Topper, one of the most pristine U.S. sites for research on Clovis, one of the earliest ancient peoples.
“This independent study is yet another example of how the Topper site with its various interdisciplinary studies has connected ancient human archaeology with significant studies of the Pleistocene,” said Goodyear, who began excavating Clovis artifacts in 1984 at the Topper site in Allendale, S.C. “It’s both exciting and gratifying.”
Younger-Dryas is what scientists refer to as the period of extreme cooling that began around 12,900 years ago and lasted 1,300 years. While that brief ice age has been well-documented – occurring during a period of progressive solar warming after the last ice age – the reasons for it have long remained unclear.

Related: Why Wasn’t the Earth Covered in Ice 4 Billion Years Ago – When the Sun was Dimmer?Unless We Take Decisive Action, Climate Change Will Ravage Our PlanetMore Evidence Supporting Einstein’s Theory of GravityAncient Whale Uncovered in Egyptian Desert

Continue reading

Scientific Illiteracy Leads to Failure to Vaccinate Which Leads to Death

Anti-vaccination propagandists help create the worst whooping cough epidemic in 70 years by Steven Salzberg is a professor at Johns Hopkins School of Medicine:

When the vaccination rates drop, everyone becomes more vulnerable to infectious diseases. When more than 90% of the population is vaccinated, we have “herd immunity” – this means the disease can’t spread because there aren’t enough susceptible people in the community. So the high rate of vaccine refusal in Washington makes it easier for whooping cough (and other diseases) to spread.

And now we learn that the U.S. is in the midst of the worst whooping cough epidemic in 70 years. One of the most hard-hit states is Washington, which the CDC just announced (on 20 July) has suffered 2,520 cases so far this year, a 1300% increase over last year. This is the highest number of cases reported in Washington since 1942.

The U.S. has had over 17,000 cases this year, putting it on track for the worst year since 1959. The highest rate of infection in the nation is in Wisconsin (which has also been hit hard by anti-vaccine effects), followed by Washington and Montana. 10 deaths have been reported, mostly in infants who were too young to be vaccinated. For all this, we can thank the anti-vaccination movement.

The failure of our society to appreciate the value of science has dire consequences. We are lucky to benefit from the results of scientific advances around us everyday. Some people, instead of appreciating the value of science waste these great gifts we have been given.

What people want to believe is up to them. When people’s actions risk others lives that is not ok. Drunk drivers risk others lives; therefore we don’t allow drunk driving. Society requires that people respect others right to live. It is sensible to require people to cooperate to limit damaging behavior: such as drunk driving or not being properly vaccinated.

Pertussis (whooping cough) is a highly contagious bacterial disease that causes uncontrollable, violent coughing. The coughing can make it hard to breathe. Pertussis, or whooping cough, is an upper respiratory infection caused by the Bordetella pertussis or Bordetella parapertussis bacteria. It is a serious disease that can cause permanent disability in infants, and even death.

Related: Vaccines Can’t Provide Miraculous Results if We Don’t Take ThemDeadly Choices: How the Anti-Vaccine Movement Threatens Us All (book)CDC Report on Failures to VaccinateOur Dangerous Antibiotic Practices Carry Great Risks

Citizen Science

Citizen science enters a new era

Another online program, Phylo, is advancing scientists’ knowledge of genetics by making a game out of DNA matching. If areas of genetic sequence are roughly similar between species, it suggests strongly that they could have an important function. Finding them has been beyond the scope of computer algorithms. But earlier this month, researchers published a study where gamers outsmarted the best computers – they made the best possible DNA sequence match between up to eight species at a time.

The potential for regular people contributing to science is great. This has a long history. For most of human history science was done by non-scientists since there were no scientists. Calling is science might be a stretch but to me it was (passing on what health cures worked for various sicknesses, how to use various tools, how to grow crops…). As scientists came into being they were primarily unprofessional – that is they practiced science but were doing so as a hobby, they were not paid and had no requirements to get a PhD or anything.

Today regular people help by collecting data (counting birds, documenting plant growth [time of year], migration data, weather data…) sharing knowledge with scientists who ask, sharing their computer to be used to analyze data, analyzing data (for example, in astronomy hobbyists often make new discoveries) and the latest way people help is through games (that essentially tap human brainpower to analyze data – such as Foldit, which I have posted about previously).

I like the contributions people can make to science but I think the biggest value is the scientific understanding people gain while participating. As Neil Degrasse Tyson says the scientifically literate see a different world.

Cornell University provides an online tool to find opporunities participate in scientific research.

And we shouldn’t forget the amazing science done by students like those honored with Intel Talent Search, though the work those winning the awards do I would lump with science by “real scientists” (I believe now most of those who win are working on projects with university scientists).

Related: Backyard Scientists Aid Research8-10 Year Olds Research Published in Royal Society JournalTeen diagnoses her own disease in science class

Dangerous Drug-Resistant Strains of TB are a Growing Threat

Drug-resistant strains of TB are out of control

The fight against new, antibiotic-resistant strains of tuberculosis has already been lost in some parts of the world, according to a senior World Health Organisation expert.

Dr Paul Nunn, head of the WHO’s global TB response team, is leading the efforts against multi-drug resistant TB (MDR-TB). Nunn said that, while TB is preventable and curable, a combination of bad management and misdiagnosis was leaving pharmaceutical companies struggling to keep up. Meanwhile, the disease kills millions every year.

“It occurs basically when the health system screws up,” said Nunn. “Treating TB requires a carefully followed regime of medication over six months. In places where health services are fragmented or underfunded, or patients poor and health professionals ill-trained, that treatment can fall short, which can in turn lead to patients developing drug-resistant strains. It’s been estimated that an undiagnosed TB-infected person can infect 10 others a year.

We tend to do a poor job of dealing with systemic effects of poorly functioning systems. Direct present threats get out attention. And we are decent at directing brain power and resources to find solutions. We are not very good at dealing with failures that put us in much worse shape in the long term. For small threats we can wait until it becomes a present threat and then deal with it. There are costs to doing this (economic and personal) but it can be done.

Some problems though become enormously complicated to deal with once they become obvious. Global climate change, for example. And often, even once they are obvious, we won’t act until the costs (economic and in human lives) are very large. It is possible that once we decide to get serious about dealing with some of these issues that the costs (economic and in human lives) will be catastrophic.

The failure to use anti-biotics medicine properly is a very serious threat to become one of these catastrophic societal failures. While tuberculosis failures may be larger in poorer countries, rich countries are failing probably much more critically in the misuse of anti-biotics (I would guess, without having much evidence at my fingertips to back up my opinion. I believe the evidence exists I am just not an expert). These failures have huge costs for all of humanity but we are risking many premature deaths because we systemically fail to deal with issues until the consequences are immediate.

Related: Extensively Drug-resistant Tuberculosis (XDR TB) (2007)What Happens If the Overuse of Antibiotics Leads to Them No Longer Working?Antibiotics Too Often Prescribed for Sinus WoesOveruse of Antibiotics (post from 2005)CDC Urges Increased Effort to Reduce Drug-Resistant Infections (2006)

Brian Cox – Lecture on Science and Quantum Mechanics

Brian Cox gave a wonderful lecture at the Royal Institution of Great Britain. This is one more great thing the internet makes possible: have great fun while you learn. Enjoy.

With the help of Jonathan Ross, Simon Pegg, Sarah Millican and James May, Brian shows how diamonds – the hardest material in nature – are made up of nothingness; how things can be in an infinite number of places at once; why everything we see or touch in the universe exists; and how a diamond in the heart of London is in communication with the largest diamond in the cosmos.

Related: Quantum Mechanics Made Relatively Simple Podcasts by Hana BetheBrian Cox Particle Physics WebcastPhysicists Observe New Property of Matter

Christian Science Monitor Scientific Literacy Quiz

This is a nice science quiz that you should learn from while taking it (unless you are extremely knowledgeable already and know every answer).

It is multiple choice, and even on some I got right, I wasn’t completely sure between two choices for example (What is the heaviest noble gas?). I managed to guess pretty well but also missed a couple.

It has one hugely annoying usability failure: after answering the question it loads a new page with the right answer and you have to click again to get the next question. Doing this for 50 questions is extremely tiresome and pointless. They correct answer could be shown at the top and also show the next question.

Some questions in the quiz:

  1. Newton’s First Law of Motion describes what phenomenon?
  2. What word, which comes from a Greek term meaning “good kernel,” describes an organism whose cells contain chromosomes inside a nucleus bounded by a membrane, as distinguished from bacterial forms of life?
  3. DNA contains adenine, cytosine, guanine, and what other nucleotide base, which is not found in RNA? (I had no idea on this one)
  4. What term describes the single initial cell of a new organism that has been produced by means of sexual reproduction?
  5. What term for an elementary particle and a fundamental constituent of matter gets its name from a line in James Joyce’s 1939 novel “Finnegans Wake”?

I managed to get 39 right, which honestly include lots of educated guesses and lucky guesses. It almost seemed the test was 30% on your ability to translate Greek or Latin. Overall I think it was difficult and I was lucky to get 39 right. It would be nice to show participant results like an earlier Science Knowledge Quiz did. Percentage getting each question would be interesting too, along with the distribution of answers.

They do provide all your answers (and the correct answers) on one page once you finish (with is a nice usability touch).

Related: Nearly Half of Adults in the USA Don’t Know How Long it Takes the Earth to Circle the SunTen Things Everyone Should Know About ScienceUnderstanding the Evolution of Human Beings by Country

Encouraging Curiosity in Kids

How do you help make your children scientifically literate? I think the biggest thing you can do is encourage curiosity.

One way to encourage curiosity it is by answering their questions (and not saying: I am too busy, don’t bother me, don’t ask me?, stop asking why…). I know adults are busy and have all sorts of stuff we are trying to get done; and the question about why I need to wash my hands doesn’t seem worth answering. But I think anytime a kid is asking why is an opportunity to teach and encourage them to keep being curious.

It is very easy to shut off this curiosity, in our society anyway (we do it to the vast majority of people). The biggest difference I see between adults and kids is not maturity or responsibility but curiosity (or lack thereof in adults) and joy (versus adults who seem to be on valium all the time – maybe they are).

As they grow up kids will have lots of science and technology questions that you don’t know the answers to. If you want them to be curious and knowledgeable, put in the effort to find answers with them. You have to help them find the answers in a way that doesn’t turn them off. If you just say – go look it up yourself (which really they can do), maybe the 2% that are going to become scientists will. But most kids will just give up and turn off their curiosity a little bit more (until eventually it is almost gone and they are ready to fit into the adult world). Which is very sad.

Once you get them used to thinking and looking things up they will start to do this on their own. A lot of this just requires thinking (no need to look things up – once a certain base knowledge is achieved). But you need to set that pattern. And it would help if you were curious, thought and learned yourself.

Photo of kids intently studying on a Malaysian beach

My mom with a group of Malaysia kids apparently intent on learning something. I am there, but not visible in this photo. Photo by my father.

While walking in the park, see one of those things you are curious about and ask why does…? It is good to ask kids why and let them think about it and try and answer. Get them in the habit of asking why themselves. And in those cases when no-one knows, take some time and figure it out. Ask some questions (both for yourself – to guide your thinking – and to illustrate how to think about the question and figure things out). If you all can’t find an explanation yourselves, take some time to look it up. Then at dinner, tell everyone what you learned. This will be much more interesting to the kids than forcing them to elaborate on what they did today and help set the idea that curiosity is good and finding explanations is interesting.

It is fun as a kid if your parent is a scientist or engineer (my father was an engineering professor).

You often don’t notice traits about yourself. In the same what I know what red looks like to me, I figure we both see this red shirt you see the red that I do. But maybe you don’t. I tend to constantly be asking myself why. If I see something new (which is many, many times a day – unless I am trapped in some sad treadmill of sameness) I ask why is it that way and then try and answer. I think most of this goes on subconsciously or some barely conscious way. I actually had an example a few months ago when I was visiting home with my brother (who is pretty similar to me).

As we were driving, I had noticed some fairly tall poles that seemed to have really small solar panels on top. I then noticed they were space maybe 20 meters apart. Then saw that there seemed to be a asphalt path along the same line. I then decided, ok, they are probably solar panels to power a light for the path at night. Then my brother asked why are there those small solar panel on top of that pole?

Continue reading

The Politics of Anti-Science

In the 1960’s the USA had an unrealistic view of how much studying and learning about science and engineering could do. Investing is science and engineering is an extremely wise economic (and cultural) endeavor but it isn’t going to solve all the problems that exist. Somehow today we find ourselves with a large number of politically powerful people we take strong anti-science positions. These tactics reduce funding and support for beneficial research and are short sited approaches to public administration. This is an unfortunate turn of events that is damaging the American economy and will have huge damages going forward.

Thankfully other countries have seen how wise investing in science and engineering is and have more than taken up the slack created by the anti-science community. Two favorite tactics of the anti-science leaders is to try and create confusion where there is none and to turn the focus away from serious matters and instead playing silly political games. The silly games will draw donors and voters so if they care about those things more than the country and the future of the country it is a sound tactic. The damage it causes the country however I would hope would limit the use of such tactics however that has not been the case recently.

‘Shrimp On A Treadmill’: The Politics Of ‘Silly’ Studies

Take the case of the “shrimp on a treadmill.” Burnett says the senator’s report linked that work to a half-million-dollar research grant. But that money actually went to a lot of different research that he and his colleagues did on this economically important seafood species.

The treadmills were just a small part of it, a way to measure how shrimp respond to changes in water quality. Burnett says the first treadmill was built by a colleague from scraps and was basically free, and the second was fancier and cost about $1,000. The senator’s report was misleading, says Burnett, “and it suggests that much money was spent on seeing how long a shrimp can run on a treadmill, which was totally out of context.”

John Hart, a Coburn spokesperson, said in an email that “our report never claimed all the money was spent on shrimp on a treadmill. The scientists doth protest too much. Receiving federal funds is a privilege, not a right. If they don’t want their funding scrutinized, don’t ask.”

What the politicians are doing is exactly what this spokesperson suggests – they are withdrawing from the anti-science culture created by some in Washington: they are moving their research to countries that support rather than attack science. That is a very bad thing for the USA. There are a number of very bad economic policies a government can take. Driving scientists and engineers into the arms of other countries is one of the worst.
Continue reading

What Happens If the Overuse of Antibiotics Leads to Them No Longer Working?

Antibiotics have been a miraculous tool to keep up healthy. Like vaccines this full value of this tool is wasted if it is used improperly. Vaccines value is wasted when they are not used enough. Antibiotics lose potency when they are overused. The overuse of anti-biotics on humans is bad (especially the huge amount of just lazy, not scientific use). But the massive overuse in livestock is much worse, it seems to me.

The health system in the USA is broken in a huge way in which it is broken is the failure to address creating systemic behavior that promotes human health and instead just treating illness. It is much better to avoid a situation where we breed super bugs and then try to treat those super bugs that have evolved to be immune to the antibiotics we have to use.

When antibiotics no longer work

While the source of the current salmonella outbreak remains murky, we can reasonably speculate about the genesis of the bug’s drug-resistance: the reportedly endemic overuse of antibiotics by the agricultural industry.

Drugs are given to livestock for multiple reasons. An obvious one is for the treatment of diseases. When livestock are sick, veterinarians administer a significant dosage in hopes of eliminating the animal’s affliction. Another reason is preventative. Animals in close quarters are more susceptible to infection, so farmers will often administer medicine to healthy animals in order to nip anything nasty in the bud. Most controversially, though, members of the agricultural industry use antibiotics for the express purpose of promoting livestock growth.

It’s a well-known, if not entirely intuitive, fact that healthy animals who are fed small, or “sub-therapeutic,” doses of antibiotics will wind up larger than their unmedicated counterparts. In many such cases, these drugs are given to livestock through their feed or water, and without the prescription or oversight of a veterinarian, according to Dr. Gail Hansen, a senior officer at the Pew Campaign on Human Health and Industrial Farming.

An estimated 80 percent of all antibiotics in the U.S. are given to food-producing livestock, according to the FDA. And approximately 83 percent of that medicine is “administered flock- or herd-wide at low levels for non-therapeutic purposes, such as growth promotion and routine disease prevention,” according to a lawsuit filed against the FDA in May. These figures could have very real consequences for public health, because the Catch-22 of this antibiotic abandon is the widespread development of drug-resistant bacteria, colloquially referred to as “super-bugs.”

In 2006, the European Union banned all use of antibiotics on livestock for growth promotion. And the U.S. Senate will consider similar legislation this year. Sen. Dianne Feinstein, D-Calif., reintroduced the “Preservation of Antibiotics for Medical Treatment Act” last month, which would significantly rein in agricultural drug use, and strictly prohibit the application of sub-therapeutic doses of drugs that have benefits for humans.

Still, the agricultural industry disputes data about its use of antibiotics and the rise of super-bugs, and it has aggressively fought efforts to legislate the matter. As a result, it’s hard to tell how far the legislation might proceed.

Related: Antibiotics Too Often Prescribed for Sinus WoesOveruse of Antibiotics (2005)FDA May Make Decision That Will Speed Antibiotic Drug Resistance (2007)

The end of the era of antibiotics

How did this happen? The driving forces are Darwin and human carelessness. Bacteria are constantly evolving, adapting to the changing conditions they face. Antibiotics usually kill bacteria. But sometimes a bacteria will develop a biological defense – particularly if too small a dose is used.

Antibiotics require a prescription in America, but our nation is still very much a part of the problem. Patients routinely demand these drugs, and doctors acquiesce, for respiratory infections and other ailments that will not respond to antibiotics because they are caused by a virus. We use soap with antimicrobial agents when regular soap does equally well. And we allow farmers to feed antibiotics to livestock in horrifying amounts, not to treat illnesses but to make farming more efficient.

The Potential Role of Concentrated Animal Feeding Operations in Infectious Disease Epidemics and Antibiotic Resistance

This working group, which was part of the Conference on Environmental Health Impacts of Concentrated Animal Feeding Operations: Anticipating Hazards—Searching for Solutions, considered the state of the science around these issues and concurred with the World Health Organization call for a phasing-out of the use of antimicrobial growth promotants for livestock and fish production. We also agree that all therapeutic antimicrobial agents should be available only by prescription for human and veterinary use.

Antibiotic Resistance in Livestock: More at Risk Than Steak
Continue reading

The State of the Oceans

World’s oceans in ‘shocking’ decline

In a new report, [an expert panel of scientists] warn that ocean life is “at high risk of entering a phase of extinction of marine species unprecedented in human history”. They conclude that issues such as over-fishing, pollution and climate change are acting together in ways that have not previously been recognised.

ocean acidification, warming, local pollution and overfishing are acting together to increase the threat to coral reefs – so much so that three-quarters of the world’s reefs are at risk of severe decline.

The report also notes that previous mass extinction events have been associated with trends being observed now – disturbances of the carbon cycle, and acidification and hypoxia (depletion of oxygen) of seawater.

Levels of CO2 being absorbed by the oceans are already far greater than during the great extinction of marine species 55 million years ago (during the Paleocene-Eocene Thermal Maximum), it concludes.

The overfishing of our oceans has been a problem for over 100 years and a known problem, that we continue to give too little attention to. Adding to that impacts of climate change and the state of ocean life is in trouble. The decision of our population to not deal with the causes of climate change will have very bad consequences. It is a shame we have so little caring about the consequences of our decisions. And even sadder that our “leaders” do such an appalling job of leading – instead they pander to selfish immediate gratification.

Related: Altered Oceans: the Crisis at Sea (2006)Unless We Take Decisive Action, Climate Change Will Ravage Our PlanetArctic System on Trajectory to New, Seasonally Ice-Free State (2005)