Posts about MIT

$100,000 Lemelson-MIT Award for Sustainability

[Sadly the video was made private so I removed it. It is disappointing how often people fail to follow decade old usability advice to make internet urls permanent]

According to the United Nations, more than 40 percent of Africans live in poverty, subsisting on less than US$1 a day. As co-founder and CEO of the nonprofit social enterprise KickStart, Fisher develops and markets moneymaking tools such as low-cost, human-powered irrigation pumps that improve the lives of small-scale rural farmers – the majority of the poor in sub-Saharan Africa.

“These poor rural farmers have one asset: a small plot of land; and one basic skill: farming. The best business they can pursue is irrigated farming,” Fisher explained. “Once they employ irrigation, the farmers can grow and sell high-value crops, like fruits and vegetables. They can grow year-round and reap four or five harvests, instead of waiting for the rain to grow a staple crop once or twice a year.”

Related: High School Inventor Teams @ MITWater Pump Merry-go-RoundAppropriate Technology: Self Adjusting GlassesFixing the World on $2 a Day
Continue reading

Siftable Modular Computers

Pretty cool. I must admit I don’t really see how this would function outside of specifically designed situation. I can imagine it could be very cool for education, especially of young kids. Siftables act in concert to form a single interface: users physically manipulate them – piling, grouping, sorting – to interact with digital information and media. David Merrill and Jeevan Kalanithi originally created Siftables at the MIT Media Lab and have formed a company to commercialize the product and have received a grant from NSF to continue the work.

Related: Cool Mechanical Simulation SystemVideo Cat CamArduino: Open Source Programmable HardwareWhat Kids can Learn

Re-engineering the Food System for Better Health

Good food nation

According to the Centers for Disease Control, between 1980 and 2006 the percentage of obese teenagers in the United States grew from 5 to 18, while the percentage of pre-teens suffering from obesity increased from 7 to 17.

Obesity is widespread due to our national-scale system of food production and distribution, which surrounds children – especially lower-income children – with high-calorie products…
90 percent of American food is processed – according to the United States Department of Agriculture – meaning it has been mixed with ingredients, often acting as preservatives, that can make food fattening.

Now, in another report finished this October after meetings with food-industry leaders, the MIT and Columbia researchers propose a solution: America should increase its regional food consumption.

Only 1 to 2 percent of all food consumed in the United States today is locally produced. But the MIT and Columbia team, which includes urban planners and architects, believes widespread adoption of some modest projects could change that, by increasing regional food production and distribution.

To help production, the group advocates widespread adoption of small-scale innovations such as “lawn to farm” conversions in urban and suburban areas, and the “10 x 10 project,” an effort to develop vegetable plots in schools and community centers. Lawns require more equipment, labor and fuel than industrial farming nationwide, yet produce no goods. But many vegetables, including lettuce, cucumbers and peppers, can be grown efficiently in small plots.

As Albright sees it, the effort to produce healthier foods “fits right in with the health-care reform effort right now because chronic diseases are so costly for the nation.” America currently spends $14 billion annually treating childhood obesity, and $147 billion treating all forms of obesity.

Good stuff. We need to improve health in the USA. The current system is unhealthy and needs to be improved. The public good from improving the health of society is huge (both in terms of individual happiness and economic benefits).

Related: Rethinking the Food Production SystemStudy Finds Obesity as Teen as Deadly as SmokingEat food. Not too much. Mostly plants.Active Amish Avoid ObesityObesity Epidemic ExplainedAnother Strike Against Cola

Science Explained: RNA Interference

Explained: RNA interference

Every high school biology student learns the basics of how genes are expressed: DNA, the cell’s master information keeper, is copied into messenger RNA, which carries protein-building instructions to the ribosome, the part of the cell where proteins are assembled.

But it turns out the picture is far more complicated than that. In recent years, biologists have discovered a myriad of other molecules that fine-tune this process, including several types of RNA (ribonucleic acid). Through a naturally occurring phenomenon known as RNA interference, short strands of RNA can selectively intercept and destroy messenger RNA before it delivers its instructions.

Double-stranded RNA molecules called siRNA (short interfering RNA) bind to complementary messenger RNA, then enlist the help of proteins, the RNA-induced silencing complex. Those proteins cleave the chemical bonds holding messenger RNA together and prevent it from delivering its protein-building instructions.

This article from MIT is one, of many, showing MIT’s commitment to science education of the public. Good job, MIT.

Related: Antigen Shift in Influenza VirusesPosts explaining scientific principles and conceptsDNA Passed to Descendants Changed by Your LifeWhy Does Hair Turn Grey as We Age?Amazing Science: Retroviruses

White Paper on Engineering Leadership Education

Engineering leadership education is emerging as a topic in engineering institutions worldwide. But the review of international “best practices” in engineering leadership education says a lack of resources, expertise, and formal networks in the nascent field is causing concern in a profession threatened by a diminishing focus on the notion of the “engineer-as-doer.”

Commissioned by the Bernard M. Gordon-MIT Engineering Leadership Program, the new white paper, Engineering Leadership Education: A Snapshot”© Review”© of International Good”© Practice, reveals that the vast majority of engineering leadership education programs are based within the U.S. and most are relatively new (developed in the last five years). The white paper highlights the distinct divide between the U.S. and the rest of the world in both attitude and approach to engineering leadership education.

“As a sub-discipline, engineering leadership education is not yet on the radar of most engineering education experts outside the U.S.,” said Dr. Edward Crawley, Director of the Bernard M. Gordon-MIT Engineering Leadership Program. “Certainly for many of the programs outside the U.S., there’s some discomfort with the notion of ‘leadership education’, as they feel this concept runs counter to their educational culture of inclusiveness and equality.”

The report was conducted by Dr. Ruth Graham in a series of interviews between September 2008 and March 2009. Dr. Graham investigated more than 40 programs, seeking to provide an insight into current practice, highlight international variations in approach, and identify examples of good practice.

One major ”©current ”©trend”© in ”©engineering”© leadership ”©education”© is ”©the ”©development ”©of”© the ”©students’”© global ”©awareness”© and”© their ”©ability ”©to ”©work ”©on ”©complex”©cross”national”© projects”© – ”©which”© is”© seen ”©by many”© as”© the ”©environment”© within ”©which”© the”© engineering ”©leader”© of ”©the ”©future ”©will ”©need ”©to ”©operate. ”©
Many”© of ”©the ”©programs ”©which ”©were ”©most ”©highly ”©rated ”©by ”©interviewees ”©incorporate ”©some”© global”© elements ”©either ”©through ”©international ”©travel, ”©remote”© link”ups”© with”© overseas”© universities/companies ”©or ”©project”© briefs”© involving ”©an”© international ”©or”© cross”cultural”© context.”© ”©The trend ”©towards”© a ”©more”© ‘global’ ”©view”© of ”©leadership ”©education”© was ”©seen ”©by ”©many ”©of ”©the”© interviewees”© as”© one”© that ”©would”© continue.”©
Continue reading

Engineered Circuits That can Count Cellular Events

Engineered circuits can count cellular events by Anne Trafton

MIT and Boston University engineers have designed cells that can count and “remember” cellular events, using simple circuits in which a series of genes are activated in a specific order.

The first counter, dubbed the RTC (Riboregulated Transcriptional Cascade) Counter, consists of a series of genes, each of which produces a protein that activates the next gene in the sequence.

With the first stimulus — for example, an influx of sugar into the cell — the cell produces the first protein in the sequence, an RNA polymerase (an enzyme that controls transcription of another gene). During the second influx, the first RNA polymerase initiates production of the second protein, a different RNA polymerase.

The number of steps in the sequence is, in theory, limited only by the number of distinct bacterial RNA polymerases. “Our goal is to use a library of these genes to create larger and larger cascades,” said Lu.

The counter’s timescale is minutes or hours, making it suitable for keeping track of cell divisions. Such a counter would be potentially useful in studies of aging.

The RTC Counter can be “reset” to start counting the same series over again, but it has no way to “remember” what it has counted. The team’s second counter, called the DIC (DNA Invertase Cascade) Counter, can encode digital memory, storing a series of “bits” of information.

The process relies on an enzyme known as invertase, which chops out a specific section of double-stranded DNA, flips it over and re-inserts it, altering the sequence in a predictable way.

The DIC Counter consists of a series of DNA sequences. Each sequence includes a gene for a different invertase enzyme. When the first activation occurs, the first invertase gene is transcribed and assembled. It then binds the DNA and flips it over, ending its own transcription and setting up the gene for the second invertase to be transcribed next.

When the second stimulus is received, the cycle repeats: The second invertase is produced, then flips the DNA, setting up the third invertase gene for transcription. The output of the system can be determined when an output gene, such as the gene for green fluorescent protein, is inserted into the cascade and is produced after a certain number of inputs or by sequencing the cell’s DNA.

This circuit could in theory go up to 100 steps (the number of different invertases that have been identified). Because it tracks a specific sequence of stimuli, such a counter could be useful for studying the unfolding of events that occur during embryonic development, said Lu.

Other potential applications include programming cells to act as environmental sensors for pollutants such as arsenic. Engineers would also be able to specify the length of time an input needs to be present to be counted, and the length of time that can fall between two inputs so they are counted as two events instead of one.

Related: Cell Signals WebcastHow Cells AgeRoger Tsien Lecture On Green Florescent ProteinMeasuring Protein Bond Strength with Optical Tweezers

Barbara Liskov wins Turing Award

photo of Barbara Liskovphoto of Barbara Liskov by Donna Coveney

Barbara Liskov has won the Association for Computing Machinery’s A.M. Turing Award, one of the highest honors in science and engineering, for her pioneering work in the design of computer programming languages.

Liskov, the first U.S. woman to earn a PhD from a computer science department, was recognized for helping make software more reliable, consistent and resistant to errors and hacking. She is only the second woman to receive the honor, which carries a $250,000 purse and is often described as the “Nobel Prize in computing.”

“Computer science stands squarely at the center of MIT’s identity, and Institute Professor Barbara Liskov’s unparalleled contributions to the field represent an MIT ideal: groundbreaking research with profound benefits for humankind. We take enormous pride that she has received the Turing Award,” said MIT President Susan Hockfield.

“Barbara Liskov pioneered some of the most important advances in fundamental computer science,” said Provost L. Rafael Reif. “Her exceptional achievements have leapt from the halls of academia to transform daily life around the world. Every time you exchange e-mail with a friend, check your bank statement online or run a Google search, you are riding the momentum of her research.”

The Turing Award is given annually by the Association for Computing Machinery and is named for British mathematician Alan M. Turing, who helped the Allies crack the Nazi Enigma cipher during World War II.

Read the full article at MIT.

Related: 2006 Draper Prize for EngineeringThompson and Tits share 2008 Abel Prize (Math)von Neumann Architecture and BottleneckMIT related posts

Albert Einstein, Marilyn Monroe Hybrid Image

Albert Einstein, Marilyn Monroe Hybrid ImageThis image looks like Albert Einstein up close. If you back up maybe 3-5 meters it will look like Marilyn Monroe. Image by Dr. Aude Oliva.

Hybrid images paper by Aude Oliva, MIT; Antonio Torralba, MIT; and Philippe G. Schyns University of Glasgow.

We present hybrid images, a technique that produces static images with two interpretations, which change as a function of viewing distance. Hybrid images are based on the multiscale processing of images by the human visual system and are motivated by masking studies in visual perception. These images can be used to create
compelling displays in which the image appears to change as the viewing distance changes. We show that by taking into account perceptual grouping mechanisms it is possible to build compelling hybrid images with stable percepts at each distance.

Hybrid images, however, contain two coherent global image interpretations, one of which is of the low spatial frequencies, the other of high spatial frequencies.

For a given distance of viewing, or a given temporal frequency a particular band of spatial frequency dominates visual processing. Visual analysis of the hybrid image still unfolds from global to local perception, but within the selected frequency band, for a given viewing distance, the observer will perceive the global structure of the hybrid first, and take an additional hundred milliseconds to organize the local information into a coherent percept (organization of blobs if the image is viewed at a far distance, or organization of edges for close viewing).

Very cool stuff.

   
Albert Einstein, Marilyn Monroe Hybrid ImageThis is just a smaller image of the above (all I did was shrink the size). For me, this already looks like Marilyn Monroe, but also needs a shorter distance to see the image seem to change.

Related: Illusions, Optical and OtherHow Our Brain Resolves SightSeeing Patterns Where None ExistsMagenta is a Colorposts on scientific explanations of what we experienceComputational Visual Cognition Laboratory at MIT

Tiny Machine Commands a Swarm of Bacteria

Tiny Machine Commands a Swarm of Bacteria

Researchers in Canada have created a solar-powered micro-machine that is no bigger than the period at the end of this sentence. The tiny machine can carry out basic sensing tasks and can indirectly control the movement of a swarm of bacteria in the same Petri dish.

Sylvain Martel, Director of the NanoRobotics Laboratory at the École Polytechnique de Montréal, previously showed a way to control bacteria attached to microbeads using an MRI machine. His new micro-machine, which measure 300×300 microns and carry tiny solar panels, will be presented this week at ICRA ’09 in Japan.

On such a small device there is little room for batteries, sensors or transmitters. So the solar cell on top delivers power, sending an electric current to both a sensor and a communication circuit. The communication component sends tiny electromagnetic pulses that are detected by an external computer.

The sensor meanwhile detects surrounding pH levels–the higher the pH concentration, the faster the electromagnetic pulses emitted by the micro-machine. The external computer uses these signals to direct a swarm of about 3,000 magnetically-sensitive bacteria, which push the micro-machine around as it pulses. The bacteria push the micro-machine closer to the higher pH concentrations and change its direction if it pulses too slowly. This is more practical than trying to attach the bacteria onto the micro-machines, says Martel, since the bacteria only have a lifespan of a few hours. “It’s like having a propulsion engine on demand,” he says…

Related: Self-assembling Nanofibers Heal Spinal Cords in MiceNanotechnology Breakthroughs for Computer ChipsUsing Bacteria to Carry Nanoparticles Into Cells

Graphene: Engineered Carbon

A material for all seasons

Graphene, a form of the element carbon that is just a single atom thick, had been identified as a theoretical possibility as early as 1947.

Its unique electrical characteristics could make graphene the successor to silicon in a whole new generation of microchips, surmounting basic physical constraints limiting the further development of ever-smaller, ever-faster silicon chips.

But that’s only one of the material’s potential applications. Because of its single-atom thickness, pure graphene is transparent, and can be used to make transparent electrodes for light-based applications such as light-emitting diodes (LEDs) or improved solar cells.

Graphene could also substitute for copper to make the electrical connections between computer chips and other electronic devices, providing much lower resistance and thus generating less heat. And it also has potential uses in quantum-based electronic devices that could enable a new generation of computation and processing.

“The field is really in its infancy,” says Michael Strano, associate professor of chemical engineering who has been investigating the chemical properties of graphene. “I don’t think there’s any other material like this.”

The mobility of electrons in graphene — a measure of how easily electrons can flow within it — is by far the highest of any known material. So is its strength, which is, pound for pound, 200 times that of steel. Yet like its cousin diamond, it is a remarkably simple material, composed of nothing but carbon atoms arranged in a simple, regular pattern.

“It’s the most extreme material you can think of,” says Palacios. “For many years, people thought it was an impossible material that couldn’t exist in nature, but people have been studying it from a theoretical point of view for more than 60 years.”

Related: Very Cool Wearable Computing Gadget from MITNanotechnology Breakthroughs for Computer ChipsCost Efficient Solar Dish by MIT StudentsSuperconducting Surprise

Using Virus to Build Batteries

MIT researchers have shown they can genetically engineer viruses to build both the positively and negatively charged ends of a lithium-ion battery. We have posted about similar things previously, for example: Virus-Assembled BatteriesUsing Viruses to Construct Electrodes and Biological Molecular Motors. New virus-built battery could power cars, electronic devices

Gerbrand Ceder of materials science and Associate Professor Michael Strano of chemical engineering, genetically engineered viruses that first coat themselves with iron phosphate, then grab hold of carbon nanotubes to create a network of highly conductive material.

Because the viruses recognize and bind specifically to certain materials (carbon nanotubes in this case), each iron phosphate nanowire can be electrically “wired” to conducting carbon nanotube networks. Electrons can travel along the carbon nanotube networks, percolating throughout the electrodes to the iron phosphate and transferring energy in a very short time. The viruses are a common bacteriophage, which infect bacteria but are harmless to humans.

The team found that incorporating carbon nanotubes increases the cathode’s conductivity without adding too much weight to the battery. In lab tests, batteries with the new cathode material could be charged and discharged at least 100 times without losing any capacitance. That is fewer charge cycles than currently available lithium-ion batteries, but “we expect them to be able to go much longer,” Belcher said.

This is another great example of university research attempting to find potentially valuable solutions to societies needs. See other posts on using virus for productive purposes.