Tag Archives: Health Care

NASA Biocapsules Deliver Medical Interventions Based Upon What They Detect in the Body

Very cool innovation from NASA. The biocapsule monitors the environment (the body it is in) and responds with medical help. Basically it is acting very much like your body, which does exactly that: monitors and then responds based on what is found.

The Miraculous NASA Breakthrough That Could Save Millions of Lives

The Biocapsules aren’t one-shot deals. Each capsule could be capable of delivering many metred doses over a period of years. There is no “shelf-life” to the Biocapsules. They are extremely resilient, and there is currently no known enzyme that can break down their nanostructures. And because the nanostructures are inert, they are extremely well-tolerated by the body. The capsules’ porous natures allow medication to pass through their walls, but the nanostructures are strong enough to keep the cells in one place. Once all of the cells are expended, the Biocapsule stays in the body, stable and unnoticed, until it is eventually removed by a doctor back on Earth.

Dr. Loftus [NASA] thinks we could realistically see wildspread usage on Earth within 10 to 15 years.

The cells don’t get released from the capsule. The cells inside the capsule secrete therapeutic molecules (proteins, peptides), and these agents exit the capsule by diffusion across the capsule wall.

NASA plans to use the biocapsules in space, but they also have very promising uses on earth. They can monitor a diabetes patient and if insulin is needed, deliver it. No need for the person to remember, or give themselves a shot of insulin. The biocapsule act just like out bodies do, responding to needs without us consciously having to think about it. They can also be used to provide high dose chemotherapy directly to the tumor site (thus decreasing the side effects and increasing the dosage delivered to the target location. Biocapsules could also respond to severe allergic reaction and deliver epinephrine (which many people know have to carry with them to try and survive an attack).

It would be great if this were to have widespread use 15 years from now. Sadly, these innovations tend to take far longer to get into productive use than we would hope. But not always, so here is hoping this innovation from NASA gets into ourselves soon.

Related: Using Bacteria to Carry Nanoparticles Into CellsNanoparticles With Scorpion Venom Slow Cancer SpreadSelf-Assembling Cubes Could Deliver MedicineNanoengineers Use Tiny Diamonds for Drug Delivery

The Beneficial Phytochemicals in Vegetables Help Us Lead Healthy Lives

If I don’t pay attention, I won’t eat enough vegetables. Even when I do pay attention I still don’t eat enough (but get closer). Paying attention to what you eat is important for your health.

Some tips from the video.

  • Eat a wide variety of vegetables, to get the benefits each offers.
  • Cruciferous vegetables have cancer preventing benefits and enhancing the immune system. Vegetables in this category include broccoli and cauliflower.
  • Berries also have chemicals that aid in the prevention of cancer.

Related: Healthy Diet, Healthy Living, Healthy WeightEat food. Not too much. Mostly plants.Are Our Vegtables Less Nutritious?

Synthetic Biologists Design a Gene that Forces Cancer Cells to Commit Suicide

Killing a cancer cell from the inside out

To create their tumor-killing program, the researchers designed a logic circuit — a system that makes a decision based on multiple inputs. In this case, the circuit is made of genes that detect molecules specific to a type of cervical cancer cell. If the right molecules are present, the genes initiate production of a protein that stimulates apoptosis, or programmed cell death. If not, nothing happens.

Because the genes used to create the circuits can be easily swapped in and out, this approach could also yield new treatments or diagnostics for many other diseases, according to Ron Weiss, an MIT associate professor of biological engineering and one of the leaders of the research team. “This is a general technology for disease-state detection,” he says.

the researchers created a synthetic gene for a protein, called hBax, that promotes cell death. They designed the gene with two separate safeguards against the killing of healthy, non-HeLa cells: It can be turned off by high levels of microRNAs that are ordinarily low in HeLa, and can also be deactivated by low levels of microRNAs that are normally plentiful in HeLa. A single discrepancy from the target microRNA profile is enough to shut off production of the cell-death protein.

If all microRNA levels match up with the HeLa profile, the protein is produced and the cell dies. In any other cell, the protein never gets made, and the synthetic genes eventually break down.

More very cool research. It is exciting to see how much can be done when we invest in science and engineering research. Of course the path from initial research to implemented solutions is long and complex and often fails to deliver on the initial hopes. But some remarkable breakthroughs achieve spectacular results that we benefit from every day.

Related: Cancer VaccinesResearchers Find Switch That Allows Cancer Cells to SpreadGlobal Cancer Deaths to Double by 2030Cloned Immune Cells Clear Patient’s Cancer

MIT Scientists Find New Drug That Could Cure Nearly Any Viral Infection

New drug could cure nearly any viral infection

The drug works by targeting a type of RNA produced only in cells that have been infected by viruses. “In theory, it should work against all viruses,” says Todd Rider, a senior staff scientist in Lincoln Laboratory‘s Chemical, Biological, and Nanoscale Technologies Group who invented the new technology.

There are a handful of drugs that combat specific viruses, such as the protease inhibitors used to control HIV infection, but these are relatively few in number and susceptible to viral resistance.

Rider drew inspiration for his therapeutic agents, dubbed DRACOs (Double-stranded RNA Activated Caspase Oligomerizers), from living cells’ own defense systems. When viruses infect a cell, they take over its cellular machinery for their own purpose — that is, creating more copies of the virus. During this process, the viruses create long strings of double-stranded RNA (dsRNA), which is not found in human or other animal cells.

As part of their natural defenses against viral infection, human cells have proteins that latch onto dsRNA, setting off a cascade of reactions that prevents the virus from replicating itself. However, many viruses can outsmart that system by blocking one of the steps further down the cascade.

Rider had the idea to combine a dsRNA-binding protein with another protein that induces cells to undergo apoptosis (programmed cell suicide) — launched, for example, when a cell determines it is en route to becoming cancerous. Therefore, when one end of the DRACO binds to dsRNA, it signals the other end of the DRACO to initiate cell suicide.

Combining those two elements is a “great idea” and a very novel approach, says Karla Kirkegaard, professor of microbiology and immunology at Stanford University. “Viruses are pretty good at developing resistance to things we try against them, but in this case, it’s hard to think of a simple path pathway to drug resistance,” she says.

Each DRACO also includes a “delivery tag,” taken from naturally occurring proteins, that allows it to cross cell membranes and enter any human or animal cell. However, if no dsRNA is present, DRACO leaves the cell unharmed.

Very cool stuff and potentially hugely beneficial. Just a reminder: this works against viruses – not bacteria (just as antibiotics do not work against viruses).

image showing the results of cultures treated with DRACO v. those not treated

Related: Science Explained: RNA Interference8 Percent of the Human Genome is Old Virus GenesVirus Engineered To Kill Deadly Brain Tumors
Continue reading

Cancer Vaccines

A reader commented on a previous post (MIT Engineers Design New Type of Nanoparticle for Vacines) asking about how vaccines can fight cancer. Preventative vaccines can build up immune response to viruses which cause cancer. So the vaccine actually works against the virus which prevents the virus from causing cancer.

The U.S. Food and Drug Administration (FDA) has approved two vaccines, Gardasil® and Cervarix®, that protect against infection by the two types of human papillomavirus (HPV) – types 16 and 18 – that cause approximately 70% of all cases of cervical cancer worldwide. At least 17 other types of HPV are responsible for the remaining 30% of cervical cancer cases. HPV types 16 and/or 18 also cause some vaginal, vulvar, anal, penile, and oropharyngeal cancers.

Many scientists believe that microbes cause or contribute to between 15% and 25% of all cancers diagnosed worldwide each year, with the percentages being lower in developed than developing countries.

Vaccines can also help stimulate the immune system to fight cancers.

B cells make antibodies, which are large secreted proteins that bind to, inactivate, and help destroy foreign invaders or abnormal cells. Most preventive vaccines, including those aimed at hepatitis B virus (HBV) and human papillomavirus (HPV), stimulate the production of antibodies that bind to specific, targeted microbes and block their ability to cause infection. Cytotoxic T cells, which are also known as killer T cells, kill infected or abnormal cells by releasing toxic chemicals or by prompting the cells to self-destruct (a process known as apoptosis).

Other types of lymphocytes and leukocytes play supporting roles to ensure that B cells and killer T cells do their jobs effectively. These supporting cells include helper T cells and dendritic cells, which help activate killer T cells and enable them to recognize specific threats.

Cancer treatment vaccines are designed to work by activating B cells and killer T cells and directing them to recognize and act against specific types of cancer. They do this by introducing one or more molecules known as antigens into the body, usually by injection. An antigen is a substance that stimulates a specific immune response. An antigen can be a protein or another type of molecule found on the surface of or inside a cell.

Related: National Cancer Institute (USA)Nanoparticles With Scorpion Venom Slow Cancer SpreadUsing Bacteria to Carry Nanoparticles Into CellsGlobal Cancer Deaths to Double by 2030
Continue reading

Cat Allergy Vaccine Created

McMaster University researchers have developed a vaccine which successfully treats people with an allergy to cats. Traditionally, frequent allergy shots have been considered the most effective way to bring relief — other than getting rid of the family pet — for the 8 to 10% of the population allergic to cats.

Both options, may now be avoided thanks to the work of immunologist Mark Larché, professor at the Michael G. DeGroote School of Medicine and Canada Research Chair in Allergy & Immune Tolerance.

Building on research he’s conducted for the past 10 years in Canada and Britain, Larché and his research team have developed a vaccine which is effective and safe with almost no side effects. The research is published in a the January 2011 issue of the Journal of Allergy & Clinical Immunology, a leading journal in the allergy field.

The researchers took one protein (molecule) that cats secrete on their fur which causes the majority of allergic problems. Using blood samples from 100 patient volunteers allergic to cats, they deconstructed the molecule and identified short regions within the protein which activate T-cells (helper cells that fight infection) in the immune system.

Using the amino acid code for the whole protein, researchers made synthetic versions of these regions. For the cat allergy vaccine, they found seven peptides (strings of amino acids). “And those synthetic peptides are what we mix together to make the vaccine,” said Larché. “We picked the peptides that would work in as much of the population as possible.”

Known as “peptide immunotherapy,” a low dose of the vaccine is given into the skin. Initially, four to eight doses a year may be required, but the side effects of the traditional allergy shots do not arise, Larché said. The optimal dose will be determined in phase three clinical trials which are getting underway with a much larger group of cat allergy sufferers.

The development of a vaccine to treat people allergic to cats is the first in a line of vaccines developed with Adiga Life Sciences, a company established at McMaster in 2008. It is a joint venture between McMaster University Circassia Ltd., a UK-based biotech company.

Adiga and McMaster are now collaborating on research into the use of peptide immunotherapy for house dust mite, ragweed, grass, birch tree and moulds

Related: MIT Engineers Design New Type of Nanoparticle for Vacines10 Questions to Ask Your Vet About Cat MedicationsVaccine For Strep Infections

MIT Engineers Design New Type of Nanoparticle for Vacines

MIT engineers have designed a new type of nanoparticle that could safely and effectively deliver vaccines for diseases such as HIV and malaria. The new particles, described in the Feb. 20 issue of Nature Materials, consist of concentric fatty spheres that can carry synthetic versions of proteins normally produced by viruses. These synthetic particles elicit a strong immune response – comparable to that produced by live virus vaccines – but should be much safer, says Darrell Irvine, author of the paper and an associate professor of materials science and engineering and biological engineering.

Such particles could help scientists develop vaccines against cancer as well as infectious diseases. In collaboration with scientists at the Walter Reed Army Institute of Research, Irvine and his students are now testing the nanoparticles’ ability to deliver an experimental malaria vaccine in mice.

Vaccines protect the body by exposing it to an infectious agent that primes the immune system to respond quickly when it encounters the pathogen again. In many cases, such as with the polio and smallpox vaccines, a dead or disabled form of the virus is used. Other vaccines, such as the diphtheria vaccine, consist of a synthetic version of a protein or other molecule normally made by the pathogen.

When designing a vaccine, scientists try to provoke at least one of the human body’s two major players in the immune response: T cells, which attack body cells that have been infected with a pathogen; or B cells, which secrete antibodies that target viruses or bacteria present in the blood and other body fluids.

For diseases in which the pathogen tends to stay inside cells, such as HIV, a strong response from a type of T cell known as “killer” T cell is required. The best way to provoke these cells into action is to use a killed or disabled virus, but that cannot be done with HIV because it’s difficult to render the virus harmless.

To get around the danger of using live viruses, scientists are working on synthetic vaccines for HIV and other viral infections such as hepatitis B. However, these vaccines, while safer, do not elicit a very strong T cell response. Recently, scientists have tried encasing the vaccines in fatty droplets called liposomes, which could help promote T cell responses by packaging the protein in a virus-like particle. However, these liposomes have poor stability in blood and body fluids.

Irvine, who is a member of MIT’s David H. Koch Institute for Integrative Cancer Research, decided to build on the liposome approach by packaging many of the droplets together in concentric spheres. Once the liposomes are fused together, adjacent liposome walls are chemically “stapled” to each other, making the structure more stable and less likely to break down too quickly following injection. However, once the nanoparticles are absorbed by a cell, they degrade quickly, releasing the vaccine and provoking a T cell response.

read the full press release

Related: New and Old Ways to Make Flu VaccinesEngineering Mosquitoes to be Flying VaccinatorsNew nanoparticles could improve cancer treatmentVaccines Can’t Provide Miraculous Results if We Don’t Take Them

Aerobic Exercise Plus Resistance Training Helps Control Type 2 Diabetes

Exercise Combo Best for Controlling Diabetes

A combination of aerobic exercise and resistance training may offer the biggest benefits for people with type 2 diabetes in helping them control their disease.

HbA1c is a test that measures blood sugar control for the previous few months. Normal HbA1c is 6% or less. People with diabetes are urged to keep their HbA1c below 7%.

In the study, researchers compared the effects of a nine-month aerobic exercise program, a resistance training program, and combination exercise program vs. not exercising in 262 previously sedentary men and women with type 2 diabetes. The results showed that improvements in HbA1c levels were greatest among those who were in the combination group.

Thirty-nine percent of non-exercisers had to increase these medications compared with 32% in the resistance training group, 22% in the aerobic exercise group, and 18% in the combination group.

Diabetes is a huge and growing problem. Exercise is a good strategy to remain healthy. It is best to exercise and avoid becoming sick. But if you do get diabetes then it is even more important to take care to exercise properly.

Related: Surprising New Diabetes DataDiabetes up 90% in USA since 1997 – Study Finds Obesity as Teen as Deadly as Smoking

Nearly 1 million Children Potentially Misdiagnosed with ADHD in the USA

Nearly 1 million children in the United States are potentially misdiagnosed with attention deficit hyperactivity disorder simply because they are the youngest – and most immature – in their kindergarten class, according to new research by , Todd Elder, a Michigan State University economist.

These children are significantly more likely than their older classmates to be prescribed behavior-modifying stimulants such as Ritalin, said Todd Elder, whose study will appear in a forthcoming issue of the Journal of Health Economics (closed science, unfortunately). Michigan State should stop funding closed journals with free content – other schools have decided to put science first, before supporting a few outdated business models of select journals.

Such inappropriate treatment is particularly worrisome because of the unknown impacts of long-term stimulant use on children’s health, Elder said. It also wastes an estimated $320 million-$500 million a year on unnecessary medication – some $80 million-$90 million of it paid by Medicaid, he said.

ADHD is the most commonly diagnosed behavioral disorder for kids in the United States, with at least 4.5 million diagnoses among children under age 18, according to the Centers for Disease Control and Prevention.

The youngest kindergartners were 60 percent more likely to be diagnosed with ADHD than the oldest children in the same grade. Similarly, when that group of classmates reached the fifth and eighth grades, the youngest were more than twice as likely to be prescribed stimulants.

Overall, the study found that about 20 percent – or 900,000 – of the 4.5 million children currently identified as having ADHD likely have been misdiagnosed.

Related: Lifestyle Drugs and RiskLong Term ADHD Drug Benefits QuestionedMerck and Elsevier Publish Phony Peer-Review Journal

Are you ready for a world without antibiotics?

Are you ready for a world without antibiotics?

[Professor Tim Walsh] “This is potentially the end. There are no antibiotics in the pipeline that have activity against NDM 1-producing enterobacteriaceae. We have a bleak window of maybe 10 years, where we are going to have to use the antibiotics we have very wisely, but also grapple with the reality that we have nothing to treat these infections with.”

And this is the optimistic view – based on the assumption that drug companies can and will get moving on discovering new antibiotics to throw at the bacterial enemy. Since the 1990s, when pharma found itself twisting and turning down blind alleys, it has not shown a great deal of enthusiasm for difficult antibiotic research. And besides, because, unlike with heart medicines, people take the drugs for a week rather than life, and because resistance means the drugs become useless after a while, there is just not much money in it.

“The emergence of antibiotic resistance is the most eloquent example of Darwin’s principle of evolution that there ever was,” says Livermore. “It is a war of attrition. It is naive to think we can win.”

I have been writing about the huge risks we are talking with our future for years. The careless misuse of antibiotics is very costly (in human lives, in the future). Bacteria pose great risks to us. We need to take antibiotics to fight serious threats. The misuse of antibiotics by doctors, patients, agri-business… is the problem. And we are all living a much riskier future because far to little is being done to reduce the misuse of antibiotics.

More and more antibiotic treatments are losing effectiveness as bacteria evolve resistance. The evolution is accelerated by misuse. This costs lives today, but is likely to costs many thousands and hundreds of thousands and possible more in the next 50 years.

The NDM-1-producing bacteria were highly resistant to all antibiotics except tigecycline and colistin. In some cases, isolates were resistant to all antibiotics. The emergence of NDM-1 positive bacteria is potentially a serious global public health problem as there are few new anti-Gram-negative antibiotics in development and none that are effective against NDM-1.

Related: Antibiotics Breed Superbugs Faster Than ExpectedAntibiotics Too Often Prescribed for Sinus WoesBacteria Race Ahead of DrugsFDA May Make Decision That Will Speed Antibiotic Drug ResistanceRaised Without AntibioticsWaste Treatment Plants Result in Super BacteriaHow Bleach Kills BacteriaCDC Urges Increased Effort to Reduce Drug-Resistant Infections