Posts about women

Footballs Providing Light to Those Without Electricity at Home

This is an update on our previous post: sOccket: Power Through Play. This year, Soccket, 3,000 balls are scheduled to be put into use around the world. The college students (all women, by the way) that came up with this idea (harnessing the kenetic energy created while kicking a football [soccer ball] around to power a batter to use for lighting) are continuing to test and develop the product.

That ball has to be able to survive dusty, wet and harsh conditions and continue to provide power. The new, production version of the football powers a water sterilizer, fan, and provides up to 24 hours of LED light. It also can’t be deflated (a side affect of a design that is able to survive the rough environments, I believe).

I love to see engineers focusing on providing solutions for the billions of people that need simple solutions. Creating the next iPhone innovations is also cool, but the impact of meeting the needs of those largely ignored today, is often even greater.

The sOccket inventors also have a talent for publicity, which is always useful for entrepreneurs.

Related: Water Pump Merry-go-RoundWater and Electricity for AllHigh School Team Developing Clean Water SolutionsSmokeless Stove Uses 80% Less Fuel

I Always Wanted to be Some Sort of Scientist

A nice simple post by a soon to be Dr. of Genetics and Molecular Biology on what being a scientist is like for her. I like her take, which I think is much more accurate than some of the generalities people use. The main reason people (men or women) become scientists because they want to be scientists.

photo of almost-Dr. Caitlin

Photo the almost-Dr. Caitlin

The truth is science requires you to be social. We share ideas, techniques, and equipment. A good scientist knows her limitations and uses someone else’s expertise when her own is not enough. The modern scientist communicates not only through conferences and journals, but also through blogging and Facebook.

When a non-scientist (usually my parents or some other close relative) asks me about what I do, they inevitably want to tie it back to how I’m curing a disease and saving the world. I am not curing a disease or saving the world.

I study science because it’s cool. I study basic science — asking questions for the purpose of learning the answer. That doesn’t mean what I do isn’t important. Lots of ground-breaking medical advances have been made just because someone asked a question no one else thought to ask.

To all you ladies fighting the good fight in other fields, keep at it, because the numbers are going up for women with advanced degrees.

I’ve always wanted to be some sort of scientist. When I was in elementary school I wanted to be a paleontologist because dinosaurs are awesome (and so was “Jurassic Park”). When I was 11, I read the Hot Zone and knew I wanted to be a biologist. Though there were times that I flirted with the Dark Side, i.e., medical school, but mostly only because when my teachers figured out I was good at science they said go to medical school. No one even suggested becoming a scientist.

Great stuff. Good Luck, Caitlin.

Related: Movie Aims to Inspire College Students With Tales of Successful Minority ScientistsKids on Scientists: Before and After Talking to Real Live ScientistsWomen Choosing Other Fields Over Engineering, Math, Physics and Computer Science

Bacteria Living Inside Animals Cells

Interesting discussion on the bacteria living inside our cells. For example, many plants have bacteria that get inside the root system and then help fix nitrogen for the plant. Some sea slugs take the chloroplasts from algae they eat and incorporate it themselves, allowing them to get energy from light (photosynthesis): they become photosynthetic slugs.

Adults need science education more than kids do is also a good segment. And I agree strongly that we (as individuals and society) lose a great deal when we fail to help people enjoy learning about science during their whole lives.

I also like the usability of this widget above, where it lets you include the internal links easily into a video.

Related: Symbiotic relationship between ants and bacteriaBiologists Identified a New Way in Which Bacteria Hijack Healthy CellsUsing Bacteria to Carry Nanoparticles Into CellsThe Economic Consequences of Investing in Science Education

Cats Connect with People, and Particularly Women, as Social Partners

Cats Adore, Manipulate Women

The study is the first to show in detail that the dynamics underlying cat-human relationships are nearly identical to human-only bonds, with cats sometimes even becoming a furry “child” in nurturing homes.

“Food is often used as a token of affection, and the ways that cats and humans relate to food are similar in nature to the interactions seen between the human caregiver and the pre-verbal infant,” co-author Jon Day, a Waltham Centre for Pet Nutrition researcher, told Discovery News. “Both cat and human infant are, at least in part, in control of when and what they are fed!”

The researchers determined that cats and their owners strongly influenced each other, such that they were each often controlling the other’s behaviors. Extroverted women with young, active cats enjoyed the greatest synchronicity, with cats in these relationships only having to use subtle cues, such as a single upright tail move, to signal desire for friendly contact.

While cats have plenty of male admirers, and vice versa, this study and others reveal that women tend to interact with their cats — be they male or female felines — more than men do.

Cats also seem to remember kindness and return the favors later. If owners comply with their feline’s wishes to interact, then the cat will often comply with the owner’s wishes at other times. The cat may also “have an edge in this negotiation,” since owners are usually already motivated to establish social contact.

co-author Dorothy Gracey of the University of Vienna explained. “A human and a cat can mutually develop complex ritualized interactions that show substantial mutual understanding of each other’s inclinations and preferences.”

Readers of this blog already know how great cats are, but this is more evidence on how wonderful they are.

Related: The Evolution of House CatsCat that takes the busVideo Cat CamAwesome Cat Cam

Changing Life as We Know It

Update: Independent researchers find no evidence for arsenic life in Mono Lake

NASA has made a discovery that changes our understanding of the very makeup of life itself on earth. I think my favorite scientific discipline name is astrobiology. NASA pursues a great deal of this research not just out in space but also looking at earth based life. Their astrobiology research has changed the fundamental knowledge about what comprises all known life on Earth.

photo of Felisa Wolfe-Simon

Felisa Wolfe-Simon processing mud from Mono Lake to inoculate media to grow microbes on arsenic.

Carbon, hydrogen, nitrogen, oxygen, phosphorus and sulfur are the six basic building blocks of all known forms of life on Earth. Phosphorus is part of the chemical backbone of DNA and RNA, the structures that carry genetic instructions for life, and is considered an essential element for all living cells.

Phosphorus is a central component of the energy-carrying molecule in all cells (adenosine triphosphate) and also the phospholipids that form all cell membranes. Arsenic, which is chemically similar to phosphorus, is poisonous for most life on Earth. Arsenic disrupts metabolic pathways because chemically it behaves similarly to phosphate.

Researchers conducting tests in the harsh, but beautiful (see photo), environment of Mono Lake in California have discovered the first known microorganism on Earth able to thrive and reproduce using the toxic chemical arsenic. The microorganism substitutes arsenic for phosphorus in its cell components.

“The definition of life has just expanded,” said Ed Weiler, NASA’s associate administrator for the Science Mission Directorate. “As we pursue our efforts to seek signs of life in the solar system, we have to think more broadly, more diversely and consider life as we do not know it.” This finding of an alternative biochemistry makeup will alter biology textbooks and expand the scope of the search for life beyond Earth.

In science such huge breakthroughs are not just excepted without debate, however, which is wise.

Thriving on Arsenic:

In other words, every experiment Wolfe-Simon performed pointed to the same conclusion: GFAJ-1 can substitute arsenic for phosphorus in its DNA. “I really have no idea what another explanation would be,” Wolfe-Simon says.

But Steven Benner, a distinguished fellow at the Foundation for Applied Molecular Evolution in Gainesville, FL, remains skeptical. If you “replace all the phosphates by arsenates,” in the backbone of DNA, he says, “every bond in that chain is going to hydrolyze [react with water and fall apart] with a half-life on the order of minutes, say 10 minutes.” So “if there is an arsenate equivalent of DNA in that bug, it has to be seriously stabilized” by some as-yet-unknown mechanism.

It is sure a great story if it is true though. Other scientists will examine more data and confirm or disprove the claims.

“We know that some microbes can breathe arsenic, but what we’ve found is a microbe doing something new — building parts of itself out of arsenic,” said Felisa Wolfe-Simon, a NASA Astrobiology Research Fellow in residence at the U.S. Geological Survey in Menlo Park, Calif., and the research team’s lead scientist. “If something here on Earth can do something so unexpected, what else can life do that we haven’t seen yet?”
Continue reading

sOccket: Power Through Play

In a fun example of appropriate technology and innovation 4 college students have created a football (soccer ball) that is charged as you play with it. The ball uses an inductive coil mechanism to generate energy, thanks in part to a novel Engineering Sciences course, Idea Translation. They are beta testing the ball in Africa: the current prototypes can provide light 3 hours of LED light after less than 10 minutes of play. Jessica Matthews ’10, Jessica Lin ’09, Hemali Thakkara ’11 and Julia Silverman ’10 (see photo) created the eco-friendly ball when they all were undergraduates at Harvard College.

photo of sOccket creators: Jessica Matthews, Jessica Lin, Hemali Thakkara and Julia Silverman

sOccket creators: Jessica Matthews, Jessica Lin, Hemali Thakkara and Julia Silverman

They received funding from: Harvard Institute for Global Health and the Clinton Global Initiative University. The

sOccket won the Popular Mechanics Breakthrough Award, which recognizes the innovators and products poised to change the world. A future model could be used to charge a cell phone.

From Take part: approximately 1.5 billion people worldwide use kerosene to light their homes. “Not only is kerosene expensive, but its flames are dangerous and the smoke poses serious health risks,” says Lin. Respiratory infections account for the largest percentage of childhood deaths in developing nations—more than AIDS and malaria.

Related: High school team presenting a project they completed to create a solution to provide clean waterWater Pump Merry-go-RoundEngineering a Better World: Bike Corn-ShellerGreen Technology Innovation by College Engineering Students

Watch a June 2010 interview on the ball:
Continue reading

Florence Nightingale: The passionate statistician

Florence Nightingale: The passionate statistician

She brought about fundamental change in the British military medical system, preventing any such future calamities. To do it, she pioneered a brand-new method for bringing about social change: applied statistics.

he statistics changed Nightingale’s understanding of the problems in Turkey. Lack of sanitation, she realized, had been the principal reason for most of the deaths, not inadequate food and supplies as she had previously thought.

As impressive as her statistics were, Nightingale worried that Queen Victoria’s eyes would glaze over as she scanned the tables. So Nightingale devised clever ways of presenting the information in charts. Statistics had been presented using graphics only a few times previously, and perhaps never to persuade people of the need for social change.

Applied statistics is a tool available to all to achieve great improvement. Unfortunately it is still very underused. As George Box says: applied statistics is not about proving a theorem, it’s about being curious about things. The goal of design of experiments is to learn and refine your experiment based on the knowledge you gain and experiment again. It is a process of discovery.

Related: articles on applied statisticsThe Value of Displaying Data WellStatistics for ExperimentersPlaying Dice and Children’s NumeracyQuality, SPC and Your CareerGreat Charts

Teenage Engineer’s Company Launches Safety Stair

Young engineer launches stair aid by Geoff Adams-Spink

A young woman from Sheffield has turned a GCSE coursework project into an award-winning stair-climbing device for older and disabled people. Ruth Amos has launched her StairSteady handrail at Naidex 2008 – the annual disability exhibition in Birmingham.

She told BBC News that she was inspired to create the device for the father of one of her teachers who had had a stroke. She won an award for her idea and has now set up a company to sell it. The StairSteady is a horizontal rail at 90 degrees to the wall or banister that people can hold on to as they go up or down stairs.

The invention was then entered for the Young Engineer for Britain competition and won first prize.

Great stuff. Innovation doesn’t have to be amazing technology. Finding solutions that make people’s lives better is the key. And then showing some entrepreneurship is great, Ruth setup her company when she was 16. I wish her luck.

Related: posts on engineersEngineers Should Follow Their HeartsAutomatic Dog Washing MachineEntrepreneurial and Innovative EngineersMicrofinancing Entrepreneurs

2009 Nobel Prize in Physiology or Medicine

This year’s Nobel Prize in Physiology or Medicine is awarded to three scientists who have solved a major problem in biology: how the chromosomes can be copied in a complete way during cell divisions and how they are protected against degradation. The Nobel Laureates have shown that the solution is to be found in the ends of the chromosomes – the telomeres – and in an enzyme that forms them – telomerase.

The long, thread-like DNA molecules that carry our genes are packed into chromosomes, the telomeres being the caps on their ends. Elizabeth Blackburn and Jack Szostak discovered that a unique DNA sequence in the telomeres protects the chromosomes from degradation. Carol Greider and Elizabeth Blackburn identified telomerase, the enzyme that makes telomere DNA. These discoveries explained how the ends of the chromosomes are protected by the telomeres and that they are built by telomerase.

If the telomeres are shortened, cells age. Conversely, if telomerase activity is high, telomere length is maintained, and cellular senescence is delayed. This is the case in cancer cells, which can be considered to have eternal life. Certain inherited diseases, in contrast, are characterized by a defective telomerase, resulting in damaged cells. The award of the Nobel Prize recognizes the discovery of a fundamental mechanism in the cell, a discovery that has stimulated the development of new therapeutic strategies.

Scientists began to investigate what roles the telomere might play in the cell. Szostak’s group identified yeast cells with mutations that led to a gradual shortening of the telomeres. Such cells grew poorly and eventually stopped dividing. Blackburn and her co-workers made mutations in the RNA of the telomerase and observed similar effects in Tetrahymena. In both cases, this led to premature cellular ageing – senescence. In contrast, functional telomeres instead prevent chromosomal damage and delay cellular senescence. Later on, Greider’s group showed that the senescence of human cells is also delayed by telomerase. Research in this area has been intense and it is now known that the DNA sequence in the telomere attracts proteins that form a protective cap around the fragile ends of the DNA strands.

Many scientists speculated that telomere shortening could be the reason for ageing, not only in the individual cells but also in the organism as a whole. But the ageing process has turned out to be complex and it is now thought to depend on several different factors, the telomere being one of them. Research in this area remains intense.

The 3 awardees are citizens of the USA; two were born elsewhere.
Read more about their research at the Nobel Prize web site.

Molecular biologist Elizabeth Blackburn–one of Time magazine’s 100 “Most Influential People in the World” in 2007–made headlines in 2004 when she was dismissed from the President’s Council on Bioethics after objecting to the council’s call for a moratorium on stem cell research and protesting the suppression of relevant scientific evidence in its final report.

Related: Nobel Prize in Physiology or Medicine 20082007 Nobel Prize in Physiology or Medicine2006 Nobel Prize in Physiology or Medicine

Webcast of Dr. Elizabeth Blackburn speaking at Google:
Continue reading

Movie Aims to Inspire College Students With Tales of Successful Minority Scientists

African American women are still rare in many science professions, despite their increasing representation in undergraduate science classes. The documentary – Roots to STEM: Spelman Women in Science—seeks to explore how these women were able to succeed and to hold them up as role models.

Tarsha Ward remembers begging her mother for a stethoscope so she could be the star of career day at her kindergarten class in Charleston, S.C. Her mother presented her with something that proved more prophetic: a white lab coat.

“For me that was the beginning of a career,” said Ward, who is working toward her doctorate in biomedical sciences at Morehouse School of Medicine in Atlanta, Ga., focused on cancer research. “Ever since then everything was about science.”

“If you get into a bind you have to think it out yourself,” she said. “A Ph.D. has really taught me to think on my own. You’re here thinking in the midnight hours and there’s no book to tell you what’s right. You just have to see if it works.”

Such struggles have already paid off. “In seven months, I published my first paper. I worked on it day and night,” said Ward, a 2004 Spelman graduate. “I (loved) the fact that I could find something no one else could find and actually publish it.”

Read the full press release

Related: Documentary on 5 Women Majoring in Science and Math at Ohio StateNational Girls Collaborative Project for STEMWomen Working in ScienceWomen Choosing Other Fields Over Engineering and MathHHMI Expands Support of Postdoctoral Scientists

Barbara Liskov wins Turing Award

photo of Barbara Liskovphoto of Barbara Liskov by Donna Coveney

Barbara Liskov has won the Association for Computing Machinery’s A.M. Turing Award, one of the highest honors in science and engineering, for her pioneering work in the design of computer programming languages.

Liskov, the first U.S. woman to earn a PhD from a computer science department, was recognized for helping make software more reliable, consistent and resistant to errors and hacking. She is only the second woman to receive the honor, which carries a $250,000 purse and is often described as the “Nobel Prize in computing.”

“Computer science stands squarely at the center of MIT’s identity, and Institute Professor Barbara Liskov’s unparalleled contributions to the field represent an MIT ideal: groundbreaking research with profound benefits for humankind. We take enormous pride that she has received the Turing Award,” said MIT President Susan Hockfield.

“Barbara Liskov pioneered some of the most important advances in fundamental computer science,” said Provost L. Rafael Reif. “Her exceptional achievements have leapt from the halls of academia to transform daily life around the world. Every time you exchange e-mail with a friend, check your bank statement online or run a Google search, you are riding the momentum of her research.”

The Turing Award is given annually by the Association for Computing Machinery and is named for British mathematician Alan M. Turing, who helped the Allies crack the Nazi Enigma cipher during World War II.

Read the full article at MIT.

Related: 2006 Draper Prize for EngineeringThompson and Tits share 2008 Abel Prize (Math)von Neumann Architecture and BottleneckMIT related posts