Tag Archives: engineers

EngineerGirl Essay: The Cure to Vitamin D Deficiency

photo of Kate YuhasKate Yuhas, an eighth-grader at Brighton’s Scranton Middle School, Michigan. Photo courtesy Kate Yuhas.

Brighton eighth-grader rewarded for her love for science

Thirteen-year-old Kate Yuhas, who plans to be an environmental engineer someday, has loved science since she was little.

Yuhas received an honorable mention certificate from the National Academy of Engineering’s EngineerGirl! Web site Imagine That! Engineering Innovation Essay Contest for her essay on a tanning booth that helps people produce vitamin D. “My whole life I’ve been interested in science,” Yuhas said. “I really like helping the environment and eating organic.”

“Kate has a talent for science and math, and she’s won medals at Science Olympiad,” said her mom, Johanna, who coaches the team. “Kate has always had science-themed parties. My husband and I are both engineers, and we talk a lot about science at home.”

The essay contest asked participants to consider one of three images on the EngineerGirl! site and to discuss its potential purposes and functions using engineering creativity.

Read Kate’s essay: The Cure to Vitamin D Deficiency

What can help prevent MS, high blood pressure, and several autoimmune diseases? The answer to that question would be Vitamin D, which you can get in three ways: food, supplements, and the sun. 70 percent of Americans lack adequate amounts of Vitamin D. The reason is that people just don’t get enough sun. That’s why my invention would be so helpful. It is a special tanning booth that only gives out the specific amount of UVB rays, the type of UV rays that is needed to produce Vitamin D, which you need.

The Engineer Girl website has done a smart thing and posted all the essays online. It is a simple act but one so often other organizations fail to do in similar circumstances.

Related: Students Create “Disappearing” Nail PolishTinker School: Engineering CampScience for KidsBuilding minds by building robotsKids on Scientists: Before and After

Google Wave Developer Preview Webcast

Google Wave is a new tool for communication and collaboration on the web, coming later this year. The presentation was given at Google I/O 2009. The demo shows what is possible in a HTML 5 browser. They are developing this as an open access project. The creative team is lead by the creators for Google Maps (brothers Lars and Jens Rasmussen) and product manager Stephanie Hannon.

A wave is equal parts conversation and document. People can communicate and work together with richly formatted text, photos, videos, maps, and more.

A wave is shared. Any participant can reply anywhere in the message, edit the content and add participants at any point in the process. Then playback lets anyone rewind the wave to see who said what and when.

A wave is live. With live transmission as you type, participants on a wave can have faster conversations, see edits and interact with extensions in real-time.

Very cool stuff. The super easy blog interaction is great. And the user experience with notification and collaborative editing seems excellent. The playback feature to view changes seems good though that is still an area I worry about on heavily collaborative work. Hopefully they let you see like all change x person made, search changes…

They also have a very cool context sensitive spell checker that can highlight mis-spelled words that are another dictionary word but not right in the context used (about 44:30 in the webcast).

For software developer readers they also highly recommended the Google Web Development Kit, which they used heavily on this project.

Related: Joel Spolsky Webcast on Creating Social Web ResourcesRead the Curious Cat Science and Engineering Blog in 35 LanguagesLarry Page and Sergey Brin Interview WebcastGoogle Should Stay True to Their Management Practices

Went Walkabout. Brought back Google Wave.
Continue reading

Surgeon-engineer advances high-tech healing

Surgeon-engineer advances high-tech healing

Catherine Mohr, 40, is herself a rare creature. Part surgeon, part engineer, she designs instruments and procedures for laparoscopic, or minimally invasive, surgery as well as the surgery curriculum at Stanford University School of Medicine.

The spider – better known as the DaVinci surgical robot – was created by the Sunnyvale company Intuitive Surgical Inc., where her husband, Paul Mohr, is an engineer and she is director of medical research. She designed the special surgical instruments that attach securely to the DaVinci’s strong, wristed arms, and has helped to design the next generation of the robot.

She also designed a procedure for using the robot for gastric-bypass surgery. Her paper on the procedure was published in 2006 in Obesity Surgery, a medical journal. “Someone who needs a gastric bypass has a thick abdominal wall,” Mohr explains. “It can take months for incisions to heal, so you want to do the operation through the smallest incision you can.”

The operation is also ergonomically challenging for the surgeon. “What you’re doing inside is very challenging, and you can’t stand terribly close because these patients are so large,” she says. “It seemed to me that this was something we should do with the robot.”

The surgeon uses controllers to drive the laparoscopic instruments held by the robot, and a screen to view the action. “You don’t cut what you can’t see,” she says.

Related: Moving Closer to Robots Swimming Through BloodsteamCardiac Cath Lab: Innovation on SiteScience and Engineering Blogs

Cardiac Cath Lab: Innovation on Site

photo of Cath LabPhoto of John Cooke at the Cardiac Catheterisation Labs at St. Thomas’ hospital in London

I manage several blogs on several topics that are related. Often blog posts stay firmly in the domain of one blog of the other. Occasionally the topic blurs the lines between the various blogs (which I like). This post ties directly to my Curious Cat Management Improvement Blog. The management principles I believe in are very similar to engineering principles (no surprise given this blog). And actual observation in situ is important – to understand fully the situation and what would be helpful. Management relying on reports instead of seeing things in action results in many poor decisions. And engineers doing so also results in poor decisions.

Getting to Gemba – a day in the Cardiac Cath Lab by John Cooke

I firmly believe that it is impossible to innovate effectively without a clear understanding of the context and usage of your final innovation. Ideally, I like to “go to gemba“, otherwise known as the place where the problem exists, so I can dig for tacit knowledge and observe unconscious behaviours.

I didn’t disgrace myself and I’ve been invited back for another day or so. What did I learn that I didn’t know before? The key things I learnt were:
  • the guide wire isn’t just a means of steering the catheter into place as I thought. It is a functional tool in it’s own right
  • Feel is really critical to the cardiologist
  • There is a huge benefit in speeding up procedures in terms of patient wellbeing and lab efficiency
  • Current catheter systems lack the level of detection capability and controllability needed for some more complex PCIs (Percutaneous Cardiac Interventions)

The whole experience reminded me that in terms of innovation getting to gemba is critical. When was the last time you saw your products in use up-close and personal?

Related: Jeff Bezos Spends a Week Working in Amazon’s Kentucky Distribution CenterToyota Engineering Development ProcessMarissa Mayer on Innovation at GoogleBe Careful What You MeasureS&P 500 CEOs are Often Engineering GraduatesExperiment Quickly and Often

FreeWave’s Data Radios Bring Employee Bonuses

It is easy with the existing economic news to think things are bleak everywhere. But even within the current climate companies find success. Founded in 1993, FreeWave Technologies is a world leader in the innovative design and manufacture of ISM Band radios and wireless data solutions. Their data-transmitting radios span the globe from the Middle East to Mount Everest; from the Amazon Rainforest to Antarctica to New York. They are used by defense contractors, oil and gas companies, city and county municipalities and industrial manufacturers.

photo of Hedy LamarrHedy Lamarr from the trailer for the film Boom Town, 1940

FreeWave’s data radios are based on Frequency Hopping Spread Spectrum Technology. Spread Spectrum was originally created for the U.S. Navy during World War II to prevent the Germans from “jamming” American radio transmissions for radio-guided torpedoes. The technology was invented by Hedy Lamar, a famous movie star of the 1940’s. The original radios contained a roll of paper slotted like a player piano to cause channel switching. Hedy’s close friend, Inventor/Musician George Antheil, designed the first successful synchronization device that brought Hedy’s idea to fruition. In 1941, Hedy and George were granted a U.S. patent for the first “Secret Communications System.” The original system used merely 88 frequencies. Today, the switching is controlled in embedded firmware code that enables a radio to change frequencies hundreds of times per second and use more than 100 channels.

Engineering these radios is something the company takes quite seriously. And hiring the best talent is part of this philosophy. Every single employee considers it his/her job to ensure that customers receive top-notch service seven days a week. This extends all the way through the organization up to senior management. FreeWave is so dedicated to making its customers front and center that it provides 24-hour technical support – even rotating senior management to be on call at nights and on the weekends.

The privately held company is based in Boulder, Colorado, the company offers network design, pre-installation engineering services and manufactures its own radios (manufacturing them in Boulder).

FreeWave’s increase in revenues of 112 percent from 2003 to 2007. The company has paid this bonus every six months since the first one was paid in July 1995. Over the past year, FreeWave has invested in expanding its facility to accommodate more staff; growing its manufacturing space and capabilities; dedicating more resources and technology to its product development; increasing its customer and partner training; and, investing in marketing and sales.
Continue reading

Building Engineers by Letting Kids Build Robots

Building engineers

This year Google has enthusiastically supported my initiative to bring a local group of girls closer to technology through the FIRST Robotics Competition.

“People claim that only with the perspective of years can you know how much influence a particular event has had on you,” Tal Tzangen says and proceeds to explain how she is convinced her participation in the FIRST Robotics Competition last year has significantly changed the course of her life. Tal, a 17 year old girl from a rural part of Israel, was taking technology courses at her school, not because she was particularly interested in technology but because the other options seemed even less appealing to her. Although Israel is also known as “Silicon Wadi,” Tal thought technology was “just for geeks.” Last year she agreed to be a member of a newly forming FIRST team, not knowing what she was letting herself in for.

The competition involves 1,686 teams from more than 42,000 high schools spanning the U.S., Brazil, Canada, Chile, Germany, Israel, Mexico, the Netherlands, the Philippines, Turkey, and the U.K. Each team has six weeks to build a robot from a common kit of parts provided by FIRST. Then, they compete with other robots in a new game devised each year.

She has enlisted some pre-high school girls with the hope of serving as a role model to them. Likewise, she has encouraged the forming of a FIRST LEGO team (9-14 year olds) to ensure the “next generation” for the Robotics Competition.

Related: Lunacy – FIRST Robotics Challenge 2009National Underwater Robotics ChallengeBuilding minds by building robotsLEGO Sumo Robotic Championship

StoryCorps: Passion for Mechanical Engineering

StoryCorps is an effort to record and archive conversations. NPR plays excerpts of one of the conversations each week, and they are often inspiring. They are conversation between two people who are important to each other: a son asking his mother about her childhood, an immigrant telling his friend about coming to America, or a couple reminiscing on their 50th wedding anniversary. By helping people to connect, and to talk about the questions that matter powerful recording are made. Yesterday I heard this one – A Bent For Building, From Father To Daughter:

“Can a girl be an engineer?” she asked her father. His answer: There was no reason she couldn’t.

Anne loved to take her things apart. It was mostly her toys — until the day she took a clock apart and spread its contents out.

When her father asked what had happened, his daughter answered, “Oh, I took it apart. Daddy fix.”

And as her dad put things back together, Anne would sit by, watching intently to see how things were made. “Did you ever notice that I always followed you around the shop, watching?” Anne asked Ledo.

“I thought there was a magnet hooked up to me and to you.”

Related: Tinker School: Engineering CampSarah, aged 3, Learns About SoapWhat Kids can LearnColored Bubbles

Engineers and Scientists in Congress

I started maintaining a list of Congressmen with PhDs and graduate degrees in science, engineering and math awhile back.

Please comment with any additions that you know of.

The following were re-elected:
Vernon Ehlers, Michigan, physics PhD; Rush Holt, New Jersey, physics PhD; John Olver, Massachusetts, chemistry PhD; Brian Baird, Washington, psychology PhD; Bill Foster, Illinois, physics PhD.

Other scientists, engineers and mathematicians that were reelected include: Ron Paul, Texas, biology BS, MD; Jerry McNerney, California, mathematics PhD; Dan Lipinski, Illinois, mechanical engineering BS, engineering-economic systems MS; Todd Akin, Mississippi, management engineering BS;Cliff Stearns, Florida, electrical engineering BS; Louise Slaughter, New York, microbiology BS; Joe Barton, Texas, industrial engineering BS, Pete Stark, California, engineering BS, Mike Honda, California.

Lost: Nancy Boyda, Kansas (BS chemistry).

Newly elected: Bill Cassidy, Louisiana (BS Biochemistry, MD); Pete Olson, Texas (BA computer science); Kurt Schrader, Oregon (Doctor of Veterinary Medicine); Martin Heinrich, New Mexico (BS engineering), Gregg Harper, Mississippi (BS chemistry), Joseph Cao, Mississippi (BA physics); Brett Guthrie, Virginia (BS mathematical economics); Erik Paulsen, Minnesota, mathematics BA; Parker Griffith, Alabama (BS chemistry, MD); Cynthia Lummis, Wyoming (BS animal science and biology).

Before you leap to the conclusion that scientists are taking over Congress, remember 2 things: 1) I have probably been missing plenty that were in congress already and 2) this is still a total of less than 10% with even a BS in science, math or engineering. I attempted to determine the status of all those newly elected this year.

Please comment, if you know of others in Congress with science and engineering backgrounds. If we get this list to be relative close to accurate then we can start tracking the total representation in congress and see if it is increasing, decreasing or randomly fluctuating over time.

Related: Scientists and Engineers in CongressChina’s Technology Savvy LeadershipScience and Engineering in PoliticsThe A to Z Guide to Political Interference in Science

Rat Brain Cells, in a Dish, Flying a Plane

Adaptive Flight Control With Living Neuronal Networks on Microelectrode Arrays (open access paper) by Thomas B. DeMarse and Karl P. Dockendorf Department of Biomedical Engineering, University of Florida
investigating the ability of living neurons to act as a set of neuronal weights which were used to control the flight of a simulated aircraft. These weights were manipulated via high frequency stimulation inputs to produce a system in which a living neuronal network would “learn” to control an aircraft for straight and level flight.

A system was created in which a network of living rat cortical neurons were slowly adapted to control an aircraft’s flight trajectory. This was accomplished by using high frequency stimulation pulses delivered to two independent channels, one for pitch, and one for roll. This relatively simple system was able to control the pitch and roll of a simulated aircraft.

When Dr. Thomas DeMarse first puts the neurons in the dish, they look like little more than grains of sand sprinkled in water. However, individual neurons soon begin to extend microscopic lines toward each other, making connections that represent neural processes. “You see one extend a process, pull it back, extend it out — and it may do that a couple of times, just sampling who’s next to it, until over time the connectivity starts to establish itself,” he said. “(The brain is) getting its network to the point where it’s a live computation device.”

To control the simulated aircraft, the neurons first receive information from the computer about flight conditions: whether the plane is flying straight and level or is tilted to the left or to the right. The neurons then analyze the data and respond by sending signals to the plane’s controls. Those signals alter the flight path and new information is sent to the neurons, creating a feedback system.

“Initially when we hook up this brain to a flight simulator, it doesn’t know how to control the aircraft,” DeMarse said. “So you hook it up and the aircraft simply drifts randomly. And as the data come in, it slowly modifies the (neural) network so over time, the network gradually learns to fly the aircraft.”

Although the brain currently is able to control the pitch and roll of the simulated aircraft in weather conditions ranging from blue skies to stormy, hurricane-force winds, the underlying goal is a more fundamental understanding of how neurons interact as a network, DeMarse said.

Related: Neural & Hybrid Computing Laboratory @ University of Florida – UF Scientist: “Brain” In A Dish Acts As Autopilot, Living ComputerRoachbot: Cockroach Controlled RobotNew Neurons in Old Brainsposts on brain researchViruses and What is LifeGreat Self Portrait of Astronaut Engineer

Engineers Rule at Honda

Engineers Rule, 2006

Of all the bizarre subsidiaries that big companies can find themselves with, Harmony Agricultural Products, founded and owned by Honda Motor, is one of the strangest. This small company near Marysville, Ohio produces soybeans for tofu. Soybeans? Honda couldn’t brook the sight of the shipping containers that brought parts from Japan to its nearby auto factories returning empty. So Harmony now ships 33,000 pounds of soybeans to Japan.

Longtime auto analyst John Casesa, who now runs a consulting company, says, “There’s not a company on earth that better understands the culture of engineering.” The strategy has worked thus far. Honda has never had an unprofitable year. It has never had to lay off employees.

I checked and Honda was also profitable in 2007 and 2008 fiscal year (ending in September).

Related: Honda EngineeringAsimo Robot: Running and Climbing StairsThe Google Way: Give Engineers RoomGoogle’s Ten Golden Rules