Posts about global

Best Research University Rankings – 2007

There are several rankings of universities. They can be interesting but also have obvious limitations. I find Shanghai’s Jiao Tong University’s the most interesting (especially the international nature of it). Their real focus seems to be in providing a way for China to get a feel for how they are progressing toward developing world class universities (interesting slide presentation on their efforts). The methodology values publications and faculty awards and is provides a better ranking of research (rather than teaching). Results from the 2007 rankings of Top 500 Universities worldwide showing country representation of the top schools:

location Top 101 % of World
% of World GDP % of top 500
USA 54     4.6%   27.4%  32.7%
United Kingdom 11  0.9  4.9 8.3
Germany   6  1.3  6.0 8.1
Japan   6  2.0  9.0 6.3
Canada   4  0.5  2.6 4.3
France   4  0.9  4.6 4.3
Sweden   4  0.1  0.8 2.2
Switzerland   3  0.1  0.8 1.6
Australia   2  0.3  1.6 3.3
Netherlands   2  0.3  1.4 2.4
Israel  1  0.1  0.3 1.4
Finland   1  0.1  0.4 1.0
Norway   1  0.1  0.6 0.8
Denmark   1  0.1  0.6 0.8
Russia   1  2.2  2.0 0.4
China  20.1  5.5 2.8
India  17.0  1.9 0.4

China has 1 ranked in the 151-202 range as do Taiwan, Korea and Brazil. Singapore has one in the 102-151 range. The other country without any in the top 101 with representation in the next 101 is Italy with 3 schools in the 102-151 range and 2 in the 152-202 range. India has 2 in the 305-401 range.

Top 10 schools (same schools as last year, Cambridge moved from 2nd to 4th):

  • Harvard University
  • Stanford University
  • University of California at Berkeley
  • Cambridge University
  • Massachusetts Institute of Technology(MIT)
  • California Institute of Technology
  • Columbia University
  • Princeton University
  • University Chicago
  • Oxford University

University of Wisconsin – Madison is 17th 🙂 My father taught there while I grew up.
Continue reading

Ranking Universities Worldwide

The Webometrics Ranking of World Universities provides another estimate of the top universities. The methodology is far ideal however I still find it interesting. The various attempts to rank schools can provide a general idea of impact of various institutions (though the measures are fairly crude). Still a sensible picture (especially at the country level) can emerge. And the various rankings should be a able to track shifts in the most influential institutions and relative country strength over time. How quickly those rankings track changes will vary depending on the measures used. I would imagine most will lag the “real” changes as it is easy to imagine many measures that would lag. Still, as I have said before, I expect the USA will lose in relative ranking compared to China, India, Japan, Singapore, Mexico…

The ranking methodology used here weighed rankings in: Jiao Tong academic rankings, Essential Science Indicators, Google Scholar, Alexa (a measure of web site visits to universities) and The Times Higher World University Rankings.

Country representation of the top universities (number of top schools in each country):

location Webometrics
Top 100
Jiao Tong
Top 101
% of World
% of World GDP*
USA 53 54   4.6%   30.4%
Germany 10   5  1.3   6.3
Canada   8   4  0.5   2.5
United Kingdom   6 10  0.9   5.0
Australia   3   2  0.3   1.6
Japan   1   6 2.0 10.3
The rest of Europe 16 13
Brazil   1   0   2.8   1.8
Mexico   1   0   1.6   1.7
Israel   0   1   0.1   0.3

* IMF, World Economic Outlook Database, September 2006 (2005 data)
Continue reading

Asia: Rising Stars of Science and Engineering

Great report – The Atlas of Ideas: How Asian innovation can benefit us all by Charles Leadbeater and James Wilsdon:

Each country will develop differently. In South Korea strong government support has created a world-class information infrastructure.

China is mobilising massive resources for innovation through ambitious long-term plans, funded by rapid economic growth. Beijing’s university district produces as many engineers as all of western Europe. China is developing world-class universities and attracting multinational innovation centres.

India’s elite, trained at the Indian Institutes of Technology, are second to none. New institutions like the National Science and Engineering Foundation could energise a disjointed innovation system. Yet India’s innovation elite may face a rural backlash. Its infrastructure is in poor repair and cities like Bengalooru are congested. Even the much-vaunted IITs do not, unlike their US counterparts, animate innovation clusters.
Percentage of world share of scientific publications

Year China France Germany Japan Korea UK US EU-15
1995 2.05 6.09 7.62 8.65 0.79 8.88 33.54 34.36
1998 2.90 6.48 8.82 9.42 1.41 9.08 31.63 36.85
2001 4.30 6.33 8.68 9.52 2.01 8.90 31.01 36.55
2004 6.52 5.84 8.14 8.84 2.70 8.33 30.48 35.18

Excellent reading, the report is full of useful information I have not been able to obsorb yet.
Related: Diplomacy and Science ResearchThe World’s Best Research UniversitiesEngineering the Future EconomyWorldwide Science and Engineering Doctoral Degree DataUSA Under-counting Engineering GraduatesIncreasing American Fellowship Support for Scientists and Engineers
Continue reading

Diplomacy and Science Research

Today more and more locations are becoming viable for world class research and development. Today the following have significant ability: USA, Europe (many countries), Japan, Canada, China, Brazil, Singapore, Israel, India, Korea and Australia (I am sure I have missed some this is just what come to mind as I type this post) and many more are moving in that direction.

The continued increase of viable locations for significant amounts of cutting edge research and development has huge consequences, in many areas. If paths to research and development are blocked in one location (by law, regulation, choice, lack of capital, threat of significant damage to the career of those who would choose such a course…) other locations will step in. In some ways this will be good (see below for an explanation of why this might be so). Promising new ideas will not be stifled due to one roadblock.

But risks of problems will also increase. For example, there are plenty of reasons to want to go carefully in the way of genetically engineered crops. But those seeking a more conservative approach are going to be challenged: countries that are acting conservatively will see other countries jump in, I believe. And even if this didn’t happen significantly in the area of genetically engineered crops, I still believe it will create challenges. The ability to go elsewhere will make those seeking to put constraints in place in a more difficult position than 50 years ago when the options were much more limited (It might be possible to stop significant research just by getting a handful of countries to agree).

Debates of what restrictions to put on science and technology research and development will be a continuing and increasing area of conflict. And the solutions will not be easy. Hopefully we will develop a system of diplomacy that works, but that is much easier said than done. And the United States will have to learn they do not have the power to dictate terms to others. This won’t be an easy thing to accept for many in America. The USA will still have a great deal of influence, due mainly to economic power but that influence is only the ability to influence others and that ability will decline if diplomacy is not improved. Diplomacy may not seem to be a science and engineering area but it is going to be increasingly be a major factor in the progress of science and engineering. Continue reading

The World’s Best Research Universities

Shanghai’s Jiao Tong University produces a ranking of the top universities annually (since 2003). The methodology used focuses on research (publications) and faculty quality (Fields and Nobel awards and citations). While this seems a very simplistic ranking it still provides some interesting data: highlights from the 2006 rankings of Top 500 Universities worldwide include:

Country representation in the top schools:

subscribe to Curious Cat Engineering Blog

location Top 101 % of World
% of World GDP % of top 500
USA 54   4.6%   28.4%  33.4%
United Kingdom 10  0.9   5.1 8.6
Japan   6 2.0 11.2 6.4
Canada   4  0.5   2.4 8.0
The rest of Europe 18 4.4
Australia   2   0.3   1.5 3.2
Israel   1   0.1   0.3 1.4

Update: see our post on 2007 best research universities results

Top 10 schools:

  • Harvard University
  • Cambridge University
  • Stanford University
  • University of California at Berkeley
  • Massachusetts Institute of Technology(MIT)
  • California Institute of Technology
  • Columbia University
  • Princeton University
  • University Chicago
  • Oxford University

Continue reading

Scientific Illiteracy

Scientific Illiteracy and the Partisan Takeover of Biology by Liza Gross, Public Library of Science:

Since 1979, the proportion of scientifically literate adults has doubled—to a paltry 17%. The rest are not savvy enough to understand the science section of The New York Times or other science media pitched at a similar level. As disgracefully low as the rate of adult scientific literacy in the United States may be, Miller found even lower rates in Canada, Europe, and Japan—a result he attributes primarily to lower university enrollments.

While the 17% figure does not amaze me I am surprised that the scientific literacy has doubled since 1979.

A comparison of science education achievement: International Association for the Evaluation of Educational Achievement (TIMSS), Average science scale scores of eighth-grade students, by country (2003), top 13 shown below:
Continue reading

Engineering Education Worldwide

Quality vs. Quantity in Engineering

This article discusses the Duke study (USA Under-counting Engineering Graduates) proposing an adjustment to the numbers used for comparing engineering education results of the United States, China and India.

Like Wadhwa, Johnson suggested that the recent emphasis on increasing the number of engineers in America should take a back seat to promoting quality. “The fact there may be X, Y or Z number of [science and engineering graduates] floating around, doesn’t necessarily speak to the question of does that represent the actual high level high skill innovative talent American industries are looking for,” he said.

Related Posts:

Phony Science Gap?

A Phony Science Gap? by Robert Samuelson:

And the American figures excluded computer science graduates. Adjusted for these differences, the U.S. degrees jump to 222,335. Per million people, the United States graduates slightly more engineers with four-year degrees than China and three times as many as India. The U.S. leads are greater for lesser degrees.

It is good to see more people using the data from the Duke study we have mentioned previously: USA Under-counting Engineering GraduatesFilling the Engineering Gap. However, I think he misses a big change. It seems to me that the absolute number of graduates each year is the bigger story than that the United States has not lost the percentage of population rate of science and engineering graduates yet. China significantly exceeds the US and that India is close to the US currently in science and engineering graduates. And the trend is dramatically in favor of those countries.

There has been a Science gap between the United States and the rest of the world. That gap has been between the USA, in the lead, and the rest. That gap has been shrinking for at least 10 years and most likely closer to 20. The rate of the decline in that gap has been increasing and seems likely to continue in that direction.

Despite an eroding manufacturing base and the threat of “offshoring” of some technical services, there’s a rising demand for science and engineering skills. That may explain higher enrollments and why this “crisis” — like the missile gap — may be phony.

I wonder what eroding manufacturing base he is referring to? The United States is the world’s largest manufacturer. The United States continues to increase its share of the world manufacturing and increase, incrementally year over year. Yes manufacturing employment has been declining (though manufacturing employment has declined far less in the United States than in China). Granted China has been growing tremendously quickly, but they are still far behind the United States in manufacturing output.
Continue reading

Worldwide Science and Engineering Doctoral Degree Data

graph showing doctoral degrees awarded by region The graph shows doctoral degrees awarded by region in science and engineering (graph from the United States National Science Foundation Science and Engineering Indicators 2004 report). The data used to make the chart is included in this spreadsheet on the NSF site.

It seems to me the claims of the NY Times article discussed in our previous post are wrong. I would trust this NSF data to be fairly accurate. The full report includes a great deal of related data and is worth looking at.

The data from the NSF 2004 report (the data is from 2000 and 2001 [the most recent data they have access to]) show a total of 24,409 science and engineering doctoral degrees granted in all of Asia. How many in the USA? 25,509.

International Mobility of Doctoral Recipients from U.S. Universities by Jean M. Johnson, NSF, 2000, provides some good discussion of related issues. For example, the paper explores country of origin of the students as well as where the students go to work once they receive the degrees.

The percentage of foreign doctoral recipients planning to stay in the United States may
return to the lower 50 percent level that existed until 1992. The 60-70 percent stay rates of the 1993-99 period may have been driven by the expanding U.S. economy and employment opportunities.

In any discussion of the impact of the United States failing behind in science and engineering graduation, and the resulting economic decline, it is critical to understand where the graduates go to work. There are real changes going on:

For example, in the last 5 years, Chinese and Korean students earned more doctoral S&E degrees in their respective countries than in U.S. universities. And in 1999, Taiwanese students, for the first time, earned more doctoral S&E degrees within Taiwanese universities than from U.S. universities.

This is important information. It is also important to see that it was just 1998 when more doctoral degrees were granted in the US than in Taiwan to Taiwanese students.

It seems there are at least two critical issues that people are considering when quoting figures (or related statements about the decline of US science and engineering status). One is getting scientific and engineering workers working in the economy. Another is the actual education of students, which relates directly to the first issue and has many “spin-off” benefits.

One measure used to look at creating future science and engineering workers is the number of those earning degrees (undergraduate and graduate degrees). That is a sensible thing to look at, though it should be noted that such a measure provides a limited view (it is an input measure and not an outcome measure, which would be preferable).

I believe the graduate measure is used as a way to project into the future by many of the future health of the science and engineering success of countries. It seems a sensible measure to pay attention to: we cannot measure today the number of high wages scientists and engineers employed in specific countries 20 years from now (or the jobs those scientists and engineers create for others in the economy or the useful patents written, scientific discoveries made, engineering breakthroughs achieved…).

The number of graduates has some value in trying to predict that outcome years from now but it is only a proxy measure and not at all definitive. The United States has been remarkably effective at getting those who graduate with advanced science and engineering degrees in the United States to say (and even in getting those granted degrees elsewhere to move here during their careers and gaining tremendous benefits to the United States economy). Where students receive degrees (and where they grew up), I believe is correlated to where a person ends up working during their career, but that correlation is not perfect. And that correlation may change in the future – in fact I believe it will do so significantly.

I believe the correlation will decrease – movement will increase and much of this may not even make sense as work flows without much regard for national boundaries (while physical location is one factor if essentially workers in Singapore, India, Mexico and Germany all our working on the same project for a company based in Japan and owned 40% by Canadians… how all this is analyzed gets very confusing).

Looking at where they work immediately after graduation is a sensible thing to do, however we should also look at where they work 10 or 20 years in the later if we are interested in long term impact.

The actual education of the students is also seen as critical to many, and I agree. One reason this is important is you have many good jobs educating the students. But there are many other benefits. The students often do research which if they are in you country is much more likely to benefit your economy than if they are earning there degree elsewhere and supporting research elsewhere.

Also the leading educational hubs create a climate for technological innovation (proximity to the leading experts in the world often provides benefits in tapping that knowledge for purposes that often have economic advantages). If the students are educated elsewhere it is likely those hubs of technological innovation will move also (or at least the lure of the local hub will loose some to another hub that grows in importance). So measuring the number of graduate, post graduate and doctoral degrees granted in your country makes sense (again it is not a perfect measure but a valuable one).

While there is a great deal of worry about the importance of improving science and engineering education to capture economic benefit I think the understanding of the actual situation is lacking. I think we need to have a clearer idea of what the data actual shows. Then I think we can start looking at where we would like to improve. I am to explore related issues with this blog.

Science and Engineering Doctoral Degrees Worldwide

Lagging Engineer Degrees a Crisis by Kevin Hall:

Relative to the sizes of their populations, Asian nations are graduating five times as many undergraduate students in engineering as the United States. A study by Engineering Trends determined that the United States ranks 16th per capita in the number of doctoral graduates and 25th in engineering undergraduates per million citizens.

U.S. universities continue awarding more doctoral degrees in engineering than universities anywhere else. But the American Association of Engineering Societies said foreign nationals received 58 percent of the U.S. doctoral degrees in engineering last year: 3,766 degrees out of 6,504. A decade earlier, they accounted for less than half.

I doubt that US universities are awarding more doctoral degrees than others are. Even if that is true I doubt it will last for even 5 more years. You might measure this in various ways including: absolute number of doctoral degrees awarded or using a per capita number. I believe several European countries are ahead today on a per capita basis. On an absolute basis I would be surprised if China or India isn’t already ahead. But if neither is, that will not true for long. I tried to find some good data online and wasn’t able to find anything certain in the time I took. Lost Dominance in Ph.D. Production sites a National Bureau of Economic Research report:
Continue reading