Posts about California

Problems Using Corn as Biofuel

The pluses and (mostly) minuses of biofuels by Robert Sanders

one ripple effect from the stampede to create more ethanol from corn in the United States. As corn prices skyrocketed several years ago, soybean fields were converted to corn, and the price of soy rose. As a result, farmers in Brazil, one of the main countries with the soil, climate and infrastructure to make up the difference, began to bulldoze rainforest to grow more soybeans.

“If reduced U.S. soybean production results in a parallel increase in Brazilian soybean production, a potential net release of 1,800 to 9,100 Tg (trillion grams) of CO2-equivalents of greenhouse gas emissions due to land-use change is possible,” Coe wrote in a summary of his talk. That is equivalent to more than 9 billion metric tons of carbon dioxide.

Related: Ethanol: Science Based Solution or Special Interest WelfareKudzu Biofuel PotentialStudent Algae Bio-fuel Project

Tiny $10 Microscope

Tiny $10 Microscope

Researchers at Caltech, who developed the revolutionary imaging system, say that the devices could be mass-produced at a cost of $10 each and incorporated into large arrays, enabling high-throughput imaging in biology labs. The device could also broaden access to imaging technology: incorporated into PDA-size devices, for example, the microscopes could enable rural doctors to carry sophisticated imaging systems in their pockets.

The Caltech device uses a system of tiny fluid channels called microfluidics to direct cells and even microscopic animals over a light-sensing chip. The chip, an off-the-shelf sensor identical to those found in digital cameras, is covered with a thin layer of metal that blocks out most of the pixels. A few hundred tiny apertures punched in the metal along the fluid channel let light in. As the sample flows through the microscope, each aperture captures an image. One version of the microscope uses gravity to control the flow of the sample across the apertures. Another version, which allows for much better control, uses an electrical potential to drive the flow of cells.

Related: Video Goggles50 Species of DiatomsBlack and Decker Codeless Lawn Mower Review

$100 Million to Tackle Energy Issues

Stanford launches $100 million initiative to tackle energy issues

The $100 million in new funds will enable the hiring of additional faculty and support new graduate students, in addition to the more than $30 million in yearly funding now spent on energy research.

Precourt holds bachelor’s and master’s degrees in petroleum engineering from Stanford and an MBA from Harvard University. He has spent his career in the energy industry, holding president and/or CEO positions at Hamilton Oil Co.; Tejas Gas Corporation, subsequently a Shell Oil Co. subsidiary; and ScissorTail Energy and Hermes Consolidated, gatherers, transporters and processors of natural gas, crude oil and refined products.

He is convinced that Stanford research can influence national energy policy for the better. “The wonderful resources that are available at Stanford, and the multidisciplinary approach they have to developing working solutions, are really attractive in terms of making things happen,” he said.

On a personal level, Precourt said, “Stanford made a huge impact on my life, as I look back on it. It was a superb education and I made some wonderful friends that I’ve taken with me for my lifetime.” Precourt donated $50 million to the energy institute that bears his name.

A $40 million gift from Steyer and Taylor will create a new research center as part of the institute, the TomKat Center for Sustainable Energy.

Related: MIT’s Energy ‘Manhattan Project’Engineers Save EnergyGoogle Investing Huge Sums in Renewable Energy and is Hiringmore posts on Stanford

Stanford Gets $75 Million for Stem Cell Center

Stanford gets $75 million for stem cell center

With today’s announcement, Lokey more than doubles his commitment. School officials say he is the lead contributor for a $200 million stem cell research building that will break ground Oct. 27 and be finished in the summer of 2010. In a statement released by the medical school, Lokey said stem cells would be “as significant as the silicon chip that created Silicon Valley,” producing treatments for disease and saving lives.

He said he was driven to fund research after President Bush, in August 2001, forbid the use of federal funds for stem cell research that involved the destruction of human embryos. “It’s very narrow-minded,” Lokey said of the position. “This is about lives being saved.”

Some 350 scientists will work in the 200,000-square-foot Lorry I. Lokey Stem Cell Research Building, the school said. The center is also getting a $43.6 million grant from the California Institute for Regenerative Medicine. The institute, the state’s $3 billion stem cell funding unit, was created by a 2004 state initiative from research advocates opposed to Bush’s restrictions.

Related: Chinese Stem Cell TherapiesScientists Cure Mice Of Sickle Cell Using Stem Cell TechniqueFunding Medical Researchpost on funding science

Algorithmic Self-Assembly

Paul Rothemund, scientist at Cal Tech, provides a interesting look at DNA folding and DNA based algorithmic self-assembly. In the talk he shows the promise ahead for using biological building blocks using DNA origami — to create tiny machines that assemble themselves from a set of instructions.

Algorithmic Self-Assembly of DNA Sierpinski Triangles, PLoS paper.

I posted a few months ago about how you can participate in the protein folding, with the Protein Folding Game.

Related: Viruses and What is LifeDNA Seen Through the Eyes of a CoderSynthesizing a Genome from ScratchEvidence of Short DNA Segment Self AssemblyScientists discover new class of RNA

Lake Superior vs. Silicon Valley Hot Spots

Nice post from Rich Hoeg – Lake Superior vs. Silicon Valley Hot Spots:

Recently I had the opportunity to visit friends in Silicon Valley. While riding the light rail in Mountain View, I experienced a moment of revelation of how life differs between the shores of Lake Superior and Silicon Valley. Six young men boarded the train … all obviously geeks in their young 30’s … their laptops (all Apples) were already fired up and ready. They proceeded to have a LAN party while riding the light rail on the way to work. Why was this possible?? You need to understand that Google provides free wireless to the entire town on Mountain View. The world is connected … and interacts in different ways … at least in Silicon Valley.

Thus, life is different on the shores of Lake Superior. I am a lone software nerd looking for a wireless hotspot … not a light rail rider with free unlimited access anywhere in my community. Out in Silicon Valley I tried Google’s connection; it worked fine and did not ask for anything beyond my normal Google account.

This is one small example of why Silicon Valley is so successful. To be economically successful, countries need to focus on big things (investing in infrastructure, sensible laws relating to innovation, creating and maintaining good capital markets, investing in science and engineering education, encouraging entrepreneurs, transportation systems…) and the small stuff like this. Silicon Valley continue to be a bright light (as do other places, like Boston) but overall the USA seems to be trailing, not leading, far too often lately.

Related: Engineering the Future EconomyUSA Science Losing GroundDiplomacy and Science ResearchUSA Broadband is Slow. Really Slow.

Squid Materials Engineering

Scientists find that squid beak is both hard and soft

The sharp beak of the Humboldt squid is one of the hardest and stiffest organic materials known. Engineers, biologists, and marine scientists at the University of California, Santa Barbara, have joined forces to discover how the soft, gelatinous squid can operate its knife-like beak without tearing itself to pieces.

The key to the squid beak lies in the gradations of stiffness. The tip is extremely stiff, yet the base is 100 times more compliant, allowing it to blend with surrounding tissue. However, this only works when the base of the beak is wet. After it dries out, the base becomes similarly stiff as the already desiccated beak tip.

“You can imagine the problems you’d encounter if you attached a knife blade to a block of Jell-o and tried to use that blade for cutting. The blade would cut through the Jell-o at least as much as the targeted object. In the case of the squid beak, nature takes care of the problem by changing the beak composition progressively, rather than abruptly, so that its tip can pierce prey without harming the squid in the process. It’s a truly fascinating design!”

“If we could reproduce the property gradients that we find in squid beak, it would open new possibilities for joining materials,” explained Zok. “For example, if you graded an adhesive to make its properties match one material on one side and the other material on the other side, you could potentially form a much more robust bond,” he said. “This could really revolutionize the way engineers think about attaching materials together.”

Related: Deep-Sea Giant SquidSelf Healing PlasticSea Slug Photo Gallery

Vaccine For Strep Infections

Engineered Protein Shows Potential as a Strep Vaccine

A University of California, San Diego-led research team has demonstrated that immunization with a stabilized version of a protein found on Streptococcus bacteria can provide protection against Strep infections, which afflict more than 600 million people each year and kill 400,000.

Group A Streptococcus (GAS). GAS causes a wide variety of human diseases including strep throat, rheumatic fever, and the life-threatening “flesh-eating” syndrome called necrotizing fasciitis. Studies were performed using M1 protein, which represents the version of M protein present on the most common disease-associated GAS strains.

“We created a modified version of M1 with a more stable structure, and found that it is just as effective at eliciting an immune reaction, but safer than the original version of M1, which has serious drawbacks to its use in a vaccine.”

Related: New and Old Ways to Make Flu VaccinesMRSA Vaccine Shows PromiseNew Approach Builds Better Proteins Inside a Computer

Robin Williams Saves the Day

And now for another something completely different: Robin Williams Saves the Day at TED When Tech Fails

Before the host, BBC World presenter Matt Frei, could finish his introduction of panelist Sergey Brin from Google, he announced there was a technical issue. Frei didn’t quite know what to do with the empty air while waiting for a fix and joked that the voice in his earphone (the producer) was telling him a long, elaborate political joke about Poland.

That’s when a voice behind me spoke up, presumably a heckler, and began speaking loudly as if he were conducting a live news feed, joking that he was reporting live from TED

The crowd by then had realized it was Williams. Encouraged by their reaction, he continued reporting to some unseen BBC anchorman from his seat: “Well, they said they found the wire, but it’s not plugged in.”

Williams was then invited to take the stage and the crowd roared. He spent the next ten minutes or so riffing on Stephen Hawking (who spoke at TED earlier in the day from Cambridge, England) and the end of the universe — which will take place “exactly in one hour,” he said, looking at his watch.

He joked again about the technical glitch, indicating that although the BBC wasn’t working, audience members “with their phones are going, ‘I’m getting all of this!'” And it was true. Dozens of people were capturing the stand-up act on their phones.

He riffed about a new Apple product called the “iWhy?” and a few seconds later said he had just one question about the British royal family: “All that money and no dental plan,” he deadpanned, which got a lot of laughs and a few sympathetic nods toward the BBC presenter sitting behind him (who appeared to have perfectly fine dental hygiene).

He didn’t spare panelist Brin and Google, noting that if you walk into Google you see everyone in front of their computer sitting on exercise balls, “which I think is how they’re hatching new employees.”

Related: Macavity’s a Mystery CatMinistry of Silly Walks

Now back to your regularly scheduled science: Your Inner Fish

Collegiate Inventors Competition

A novel way to treat cancer has won the top honor at the 2007 Collegiate Inventors Competition, an annual program of the National Inventors Hall of Fame Foundation. Ian Cheong of Johns Hopkins University was announced as the grand prize winner, receiving a $25,000 prize, during a ceremony last night on the campus of the California Institute of Technology.

This year’s winners also include John Dolan of the University of California, San Francisco in the graduate category for his work on the Dolognawmeter, a device to measure the effectiveness of painkillers, and Corey Centen and Nilesh Patel of McMaster University in the undergraduate category for their work on creating a CPR assist device. The McMaster team and Dolan each received a $15,000 prize from the competition, which is sponsored by the United States Patent and Trademark Office (USPTO) and the Abbott Fund.

The Collegiate Inventors Competition has recognized and encouraged undergraduate and graduate students on their quest to change the world around them for 17 years. Entries for 2008 are due by 16 May 2008 and must be the original idea and work product of the student/advisor team, and must not have been (1) made available to the public as a commercial product or process or (2) patented or published more than 1 year prior to the date of submission to the competition. The entry submitted must be written in English.

The invention, a reduced-to-practice idea or workable model, must be the work of a student or team of students with his or her university advisor. If it is a machine, it must be operable. If it is a chemical, it must be complete with evidence of successful application of the idea. If it is a new plant, color photographs or slides must be included in the submission. If a new or original ornamental design for an article of manufacture is submitted, the entire design must be included in the application. In addition, the invention should be reproducible.

Related: Inventor TV ShowsEngineering a Better Blood Alcohol SensorModern Marvels Invent Now ChallengeSchoofs Prize for Creativity

Ian Cheong, 33, arrived at Johns Hopkins University from his native Singapore prepared to focus on cancer therapy. Drugs used in cancer treatment routinely kill the healthy cells as well as the cancer cells because they are potent but nonspecific. Cheong took on the task of finding a way to make the cancer drugs more specific. He injected bacterial spores into the subject which made their way to oxygen-poor areas within cancerous tumors. Then, Cheong put a cancerfighting drug in lipid particles and injected those liposomes into a subject. The germinated bacterial spores also secrete a protein that makes liposomes fall apart when the drug-containing liposomes are in the proximity of the tumors, and the drug is released only in those specific areas. Cheong, originally educated as a lawyer, received his Ph.D. in cell and molecular medicine from Johns Hopkins and is currently working on postdoctoral research. His advisor, Bert Vogelstein, receives a $15,000 prize.

The idea for this post was submitted through our post suggestion page.