Citizen Science: Use Your Smart Phone to Help Scientists

10 Ways You Can Use Your Smartphone to Advance Science by Matt Soniak

Scientists have started to use the abilities and prevalence of smartphones to their advantage, creating apps specifically for their studies and crowdsourcing observation and data collection. When almost everyone has an Internet connection, a camera, and a GPS unit right in their phone, almost anyone can gather, organize, and submit data to help move a study along.

The Indicator Bats Program (iBats), a joint project of the Zoological Society of London’s Institute of Zoology and The Bat Conservation Trust, got its start with a couple of researchers working in Transylvania (of course) in 2006. The idea of the project is to identify and monitor bat populations around the world by the ultrasonic echo-location calls they use to navigate and find prey.

The goal of Project NOAH (Networked Organisms and Habitats) is pretty ambitious: “build the go-to platform for documenting all the world’s organisms.” Their app has two modes. “Spottings” lets you take photos of plants and animals you see, categorize and describe them and then submit the data for viewing on NOAH’s website and use by researchers for population and distribution studies.

Invasive plants and animals can crowd out natives, compete with them for food sources and alter the fire ecology of an ecosystem, disrupting its natural balance. Researchers and programmers from UCLA, the Santa Monica Mountains National Recreation Area and the University of Georgia have teamed up to create the What’s Invasive citizen science program and smartphone app. Volunteers can use the app to look up lists of the top invasive species in their area, created by National Park Service rangers and biologists. If they spot a plant or animal from the list, they submit a geo-tagged observation, with optional picture and text notes, so that scientists can locate, identify, study try to remove the species.

Great stuff.

Related: Backyard Scientists Aid ResearchCellphone MicroscopeThe Great Sunflower Project

Our Dangerous Antibiotic Practices Carry Great Risks

Our continued poor antibiotics practices increase the risk of many deaths. We are very poor at reacting to bad practices that will kill many people in the future. If those increased deaths happened today it is much more likely we would act. But as it is we are condemning many to have greatly increased odds of dying from bacterial causes that could be prevented if we were more sensible.

Resistance to antibiotics is becoming a crisis

Increasingly, microbes are becoming untreatable. Margaret Chan, director general of the World Health Organization, warned in March of a dystopian future without these drugs. “A post-antibiotic era means, in effect, an end to modern medicine as we know it,” she said. “Things as common as strep throat or a child’s scratched knee could once again kill.”

evidence is mounting that antibiotics are losing efficacy. Through the relentless process of evolution, pathogens are evading the drugs, a problem known broadly as antimicrobial resistance.

Europe has launched a $741 million, seven-year, public-private collaborative research effort to accelerate drug development.

Seeking new antibiotics is wise but the commentary completely ignores our bad practices that are causing the problem to be much worse than it would be if we acted as though bad practices that will lead to many deaths should be avoided.

Previous posts about practices we taking that create great risk for increased deaths: Antibiotics Too Often Prescribed for Sinus Woes (2007)Meat Raised Without Antibiotics is Sadly Rare Today (2007)Overuse of Antibiotics (2005)CDC Urges Increased Effort to Reduce Drug-Resistant Infections (2006)FDA May Make Decision That Will Speed Antibiotic Drug Resistance (2007)Antibacterial Soaps are Bad (2007)Waste Treatment Plants Result in Super Bacteria (2009)Antibiotics Breed Superbugs Faster Than Expected (2010)Antibiotics Use in Farming Can Create Superbugs (2010)What Happens If the Overuse of Antibiotics Leads to Them No Longer Working? (2011)Dangerous Drug-Resistant Strains of TB are a Growing Threat (2012)

Obviously bacteria evolve to survive the counter measures we currently have. The foolish practices of promoting ignorance of evolution leads to a society where the consequences of actions, and the presence of evolution, lead to bad consequences. We find ourselves in that society.

Continue reading

Science PhD Job Market in 2012

The too-big-to-fail-bank crisis continues to produce huge economic pain throughout the economy. Science PhDs are not immune, though they are faring much better than others.

U.S. pushes for more scientists, but the jobs aren’t there

Since 2000, U.S. drug firms have slashed 300,000 jobs, according to an analysis by consulting firm Challenger, Gray & Christmas. In the latest closure, Roche last month announced it is shuttering its storied Nutley, N.J., campus — where Valium was invented — and shedding another 1,000 research jobs.

Largely because of drug industry cuts, the unemployment rate among chemists now stands at its highest mark in 40 years, at 4.6 percent, according to the American Chemical Society, which has 164,000 members. For young chemists, the picture is much worse. Just 38 percent of new PhD chemists were employed in 2011, according to a recent ACS survey.

Two groups seem to be doing better than other scientists: physicists and physicians. The unemployment rate among those two groups hovers around 1 to 2 percent, according to surveys from NSF and other groups. Physicists end up working in many technical fields — and some go to Wall Street — while the demand for doctors continues to climb as the U.S. population grows and ages.

But for the much larger pool of biologists and chemists, “It’s a particularly difficult time right now,” Stephan said.

From 1998 to 2003, the budget of the National Institutes of Health doubled to $30 billion per year. That boost — much of which flows to universities — drew in new, young scientists. The number of new PhDs in the medical and life sciences boomed, nearly doubling from 2003 to 2007, according to the NSF.

The current overall USA unemployment rate is 8.2%.

The current economy doesn’t provide for nearly guaranteed success. The 1960’s, in the USA, might have come close; but that was a very rare situation where the richest country ever was at the prime of economic might (and even added on top of that science was seen as key to promote continued economic success). Today, like everyone else (except trust fund babies), scientists and engineers have to make their way in the difficult economy: and that should be expected to be the case in the coming decades.

Right now, physicians continue to do very well but the huge problems in the USA health system (we pay double what other rich countries do for not better outcomes) make that a far from a certain career. They likely will continue to do very well, financially, just not as well as they have been used to.

Science and engineering education prepare people well for economic success but it is not sufficient to guarantee the easy life. Just like everyone else, the ability to adapt to current market conditions is important in the current economic climate – and will likely continue to be hugely important going forward.

The reason to get a undergraduate or graduate science or engineering education is because you are interested in science and engineering. The economic prospects are likely to continue to be above average (compared to other education choices) but those choosing this path should do so because they are interested. It makes sense to me to factor in how your economic prospects will be influenced by your choices but no matter what choices are made a career is going to take hard work and likely many frustrations and obstacles. But hopefully a career will provide much more joy than hardship.

Related: Career Prospect for Engineers Continues to Look PositiveAnother Survey Shows Engineering Degree Results in the Highest PayThe Software Developer Labor Market

The Appendix Serves As a Reservoir of Beneficial Bacteria

This is an interesting explanation for the purpose of the appendix.

The appendix does have a use – re-booting the gut

The US scientists found that the appendix acted as a “good safe house” for bacteria essential for healthy digestion, in effect re-booting the digestive system after the host has contracted diseases such as amoebic dysentery or cholera, which kill off helpful germs and purge the gut.

This function has been made obsolete by modern, industrialised society; populations are now so dense that people pick up essential bacteria from each other, allowing gut organisms to regrow without help from the appendix, the researchers said.

But in earlier centuries, when vast tracts of land were more sparsely populated and whole regions could be wiped out by an epidemic of cholera, the appendix provided survivors with a vital individual stockpile of suitable bacteria.

Related: Microbes Flourish In Healthy PeopleBeneficial BacteriaForeign Cells Outnumber Human Cells in Our Bodies

The Chemistry of Fireworks

The video features John A. Conkling, Ph.D., who literally wrote the book on fireworks — he is the author of The Chemistry of Pyrotechnics.

The earliest documentation of fireworks dates back to 7th century China.

A Syrian named Hasan al-Rammah wrote of rockets, fireworks, and other incendiaries, using terms that suggested he derived his knowledge from Chinese sources, such as his references to fireworks as “Chinese flowers”.

Chinese fireworks began to gain popularity around the mid-17th century.

Related: Cooking with Chemistry, Hard CandyThe Chemistry of CookingVideo of Briggs-Rauscher Oscillating Chemical Reaction

Wonderful Views of Life Using Micro-photography

The Olympus BioScapes 2011 Winners Gallery is full of great photos and videos of micro bioscapes.

Floschularia Ringerns Rotifer

Floschularia Ringerns Rotifer feeding by Charles Crebs

Winning photo by Mr. Charles Krebs, Issaquah, Washington, USA
Specimen: Rotifer Floscularia ringens feeding. Its rapidly beating cilia (hair-like structures) bring water containing food to the rotifer
Technique: Differential interference contrast microscopy

The photo shows the microscopic animal’s self-made reddish tube-shaped home, with a building block in the process of being formed inside the rotifer’s body.

Related: 2006 Nikon Small World Photos50 Species of DiatomsArt of Science at PrincetonArt of Science

Special Summer Fun Issue of Make Magazine

Make is really is a wonderful way to find ideas. Some people have the imagination to come up with all sorts of projects to try, I don’t. But Make takes care of that for you and provides really interesting ideas for things to try out yourself.

The summer fun guide includes over 50 projects for kids of all ages.

Related: Book on Adventures in MakingAwesome Gifts for the Maker in Your LifeThe DIY Movement Revives Learning by Doing