As scientists have been able to see farther and deeper into the universe, the laws that govern its expansion have been revealed to be under the influence of an unexplained force.
In a paper on the arXiv, Astrophysical Tests of Modified Gravity: Constraints from Distance Indicators in the Nearby Universe, are a vindication of Einstein’s theory of gravity. Having survived several decades of tests in the solar system, it has passed this new test in galaxies beyond our own as well.
In 1998, astrophysicists made an observation that turned gravity on its ear: the universe’s rate of expansion is speeding up. If gravity acts the same everywhere, stars and galaxies propelled outward by the Big Bang should continuously slow down, like objects thrown from an explosion do here on Earth.
This observation used distant supernovae to show that the expansion of the universe was speeding up rather than slowing down. This indicated that something was missing from physicists’ understanding of how the universe responds to gravity, which is described by Einstein’s theory of general relativity. Two branches of theories have sprung up, each trying to fill its gaps in a different way.
One branch — dark energy — suggests that the vacuum of space has an energy associated with it and that energy causes the observed acceleration. The other falls under the umbrella of “scalar-tensor” gravity theories, which effectively posits a fifth force (beyond gravity, electromagnetism and the strong and weak nuclear forces) that alters gravity on cosmologically large scales.
“These two possibilities are both radical in their own way,” University of Pennsylvania astrophysicist Bhuvnesh Jain said. “One is saying that general relativity is correct, but we have this strange new form of energy. The other is saying we don’t have a new form of energy, but gravity is not described by general relativity everywhere.”
Jain’s research is focused on the latter possibility; he is attempting to characterize the properties of this fifth force that disrupts the predictions general relativity makes outside our own galaxy, on cosmic length scales. Jain’s recent breakthrough came about when he and his colleagues realized they could use the troves of data on a special property of a common type of star as an exquisite test of gravity.
Gravity and the Scientific Method
Posted on April 18, 2011 Comments (4)
One of the topics I return to repeatedly is the scientific method – theories must to tested. As evidence mounts that new ideas do a good job of explaining theories they become more accepted. But they continue to be tested in new ways as the ideas are extended and ramification are explored. And science progress means that old conventions can be overturned as new evidence is gathered.
Science is not about current beliefs. Science is about seeking knowledge. If the search for knowledge leads to evidence that old ideas were wrong those ideas are overturned. Since people are involved that process isn’t as clean as it sounds above. People get comfortable with beliefs. They build careers on expanding those beliefs. Most are uncomfortable when they are challenged and don’t accept new ideas even when the evidence mounts. But some do accept the new ideas. Some challenge the new ideas by running experiments. And some of those prove the new ideas faulty. Some become convinced of the new ideas as the results of their experiments make the new ideas seem more sensible (instead of getting the results they expected).
Building the body of scientific knowledge is not nearly as clean and simple as most people think. It isn’t a simple process, what is the underlying truth can be debatable. But the beauty of the scientific process is how it helps us overcome our biases and provide evidence to support the theories we support. The scientific method (combined with our human involvement) doesn’t mean new ideas are accepted easily but it does mean new ideas compete on the basis of evidence not just the power of those that hold the beliefs.
Is gravity not actually a force? Forcing theory to meet experiments
Continue reading →
Categories: Research, Science
Tags: commentary, curiouscat, experiment, gravity, physics, psychology, quote, Science, science explained, science facts, scientific inquiry