Posts about electricity

Home Engineering: Windmill for Electricity

photo of windmill

William Kamkwamba’s Malawi Windmill:

I built my first windmill when I was 15. Over the next few years I kept refining the design. I made many modifications to the plans i found in the book. For example, I increased the blades from three to four to provide more power output. The windmill now powers lights for 3 rooms and a light over our porch outside. I also use it to power my family’s two radios. I also can charge mobile phones that the neighbors have.

Two weeks ago I used a computer for the first time. I learned about Google and searched for “windmill” and “solar energy.” I was amazed to learn how many entries there were for both subjects. My friends showed me how to create an email address and now I am on Gmail. Now I am practicing sending and receiving emails when I have access to a computer.

On Sunday, my friends from National Solar and I completed the next phase of work on my electrical system. You can see a compete set of (my first) digital photos at my new site on Flickr. I had the following goals:

1. Upgrade the power generation in the windmill
2. Upgrade the battery technology and capacity, to provide more even power for more hours at a time
3. Increase the brightness of the lighting (lumens) to make it easier for my family to accomplish tasks at night, especially to read…

Photo: Back in November, the windmill was only 5 meters (15 feet) tall compared to 12 meters (36 feet) today. I raised the height because I discovered that the best wind was just over the top of the shorter windmill.

Related: Building an Electricity Producing Wind TurbineMicro-Wind Turbines for Home UseFloating Windmills

Electricity Savings

Surprise: Not-so-glamorous conservation works best

When high school science teacher Ray Janke bought a home in Chicopee, Mass., he decided to see how much he could save on his electric bill.

He exchanged incandescent bulbs for compact fluorescents, put switches and surge protectors on his electronic equipment to reduce the “phantom load” – the trickle consumption even when electronic equipment is off – and bought energy-efficient appliances.

Two things happened: He saw a two-thirds reduction in his electric bill, and he found himself under audit by Mass Electric. The company thought he’d tampered with his meter. “They couldn’t believe I was using so little,” he says.

Cutting back on electricity used for lighting (9 percent of residential usage nationwide) presents the quickest savings-to-effort ratio. The EPA estimates that changing only 25 percent of your home’s bulbs can cut a lighting bill in half. Incandescent bulbs waste 90 percent of their energy as heat, and compact fluorescents, which can be up to five times more efficient, last years longer as well.

I am far from doing everything I could, but at least I have installed compact fluorescent light bulbs as old ones burned out. Actually I don’t think I have changed a light bulb in several years (another benefit of these energy efficient lights is they last a long time).

Related: Engineers Save EnergyWind PowerMillennium Technology Prize for LED lights…MIT’s Energy ‘Manhattan Project’$10 Million for Science Solutions

Water and Electricity for All

Segway Creator Unveils His Next Act

Water and Electricity may not seem like something to wish for if you are reading this post. However for over 1 billion people that do without both it is.

Dean Kamen, the engineer who invented the Segway, is puzzling over a new equation these days. An estimated 1.1 billion people in the world don’t have access to clean drinking water, and an estimated 1.6 billion don’t have electricity. Those figures add up to a big problem for the world and an equally big opportunity for entrepreneurs.

To solve the problem, he’s invented two devices, each about the size of a washing machine that can provide much-needed power and clean water in rural villages.

“Eighty percent of all the diseases you could name would be wiped out if you just gave people clean water,” says Kamen. “The water purifier makes 1,000 liters of clean water a day, and we don’t care what goes into it. And the power generator makes a kilowatt off of anything that burns.”

Kamen’s goal is to produce machines that cost $1,000 to $2,000 each. That’s a far cry from the $100,000 that each hand-machined prototype cost to build.

Quadir is going to try and see if the machines can be produced economically by a factory in Bangladesh. If the numbers work out, not only does he think that distributing them in a decentralized fashion will be good business — he also thinks it will be good public policy. Instead of putting up a 500-megawatt power plant in a developing country, he argues, it would be much better to place 500,000 one-kilowatt power plants in villages all over the place, because then you would create 500,000 entrepreneurs.

More products from his company, Deka Research & Development Corp, including: Hydroflexâ„¢ Irrigation Pump, IBOTâ„¢ Mobility System and Intravascular Stent.

Dean Kamen understands what engineering can do. “Today, almost 200 engineers, technicians, and machinists work in our electronics and software engineering labs, machine shop, and on CAD stations.”

DEKA’s mission, first and foremost, is to foster innovation. It is a company where the questioning of conventional thinking is encouraged and practiced by everyone—engineers and non-engineers alike—because open minds are more likely to arrive at workable solutions. This has been our formula for success since we began, and it will continue to drive our success in the future.

Dean Kamen founded For Inspiration and Recognition of Science and Technology (FIRST)